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Theorems marked with * are included on the theory list. Note that unlike some
other courses, all statements to be proved are given in their entirety. Additional
theorems, definitions and remarks are included to provide suitable background or
techniques for difficult problems. This material is subject to change.

The author welcomes any questions or corrections, and acknowledges such contri-
butions by (in alphabetical order) Martin Due (f18), Erik Jansson (f18), Oskar Molin
(tm18).
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Definition (Fourier coefficients). The Fourier coefficients ¢, of a function f on
[—7, 7] are

1 us

tn =5~ (z)e™ " dx (1)
1" L ["
a1 [ F@eostna)ds, b=~ [ f@sinode @)

Theorem (Bessel’s inequality). Assume f € L£2([a,b]). Then

Sl < 5 [ If@Par g

—T

Corollary. Since the series in the equality converges, we necessarily have

lim ¢,=0 and lim a, =0, lim b,=0
n—=+oo n—+oo n—+oo

Remark (Dirichlet kernel). The Nth Dirichlet kernel

:% 2

n=—N n=—N n=1

1 R 1 il
D (1) : pint — © et _ > (1 + Z 2005(nt)> (4)

has two notable properties:

/WDN(t) = [ Dut dt = (5)
0 —T

since Dy is even, and using geometric sums

Dy (t) = e—iNt 221\5 Nt _ e—iNt 1 _ gi(2N+1)t _ e—iNt _ oi(N+1)t “
27 = 2T 1 — eit 2 (1— )

Theorem* (2.1, pointwise convergence of Fourier series). Assume that f
is piecewise C1 on [—m,71| and f is defined (extended) to be 2m-periodic on
R. Then

N
Sn(x) == Z Cpe'™® (7)
n=—N
satisfies
Jim Sy (z) = w Ve e R (8)

where f(x4) :=limy .+ f(t), f(z=) :=lm_,,— f(¢).
Thus, when f is continuous at x, then f(xy) = f(x_) = f(x), so the
Fourier series converges to f(x).




Proof. Fix an arbitrary « € R. Our goal is to prove
i[5 - 22 £t
N—o0

5 ‘:o (9)

We insert the definition from .

1 " —in inT 1 " in(x—
sv = X (5 [ s may) e = 5 o [ pwenenay
In|<N In|<N
(10)
Let t :=y—x. Then y =t+2x = dy = dt. We may shift the bounds of
integration because the integral is over a whole period.

Sn(x)= > §%¥/7i6j1t+aﬂe””ﬂﬁ:: > ;; 7rf@+<me*Mtdt(1n

[n|<N In|<N -7

We rewrite using the definition of Dy.

Sn(x) = 7rf(t—Hc) Z%e‘i”t dt = Trf(t—i—:c)DN(t)dt (12)

o i<y =" -
Returning to our goal @, we make use of this expression and properties of Dy .

f($+)+f(37)‘

> (13)

‘ _ﬂ ft+x)Dn(t)dt —

(Bl

T 0 T

" fe+osya- [ seopya- | f<x+>DN<t>dt] (14)
0 T

=\ / (F(t+ ) — f(o)) Dy (t) dt + / <f<t+x>—f<x+>>DN<t>dt\ (15)

0 _—iNt _ _i(N+1)t T o—iNt _ i(N+1)t
@ ‘/ ;(f(tm)—f(m_))dw/o () — flay)) dt

_x 2m(1—e) 27(1 — et)

(16)
Let g(t) be as follows:
f(t+a:)7‘f(z,) —r <t 0
- 1—e?t TSt <
gu)_{“”ﬁj@” O<t<nm (17
Then g(t) is piecewise O, since

ftra) -~ fa) _ Wtn) - fe) | ) P

1—eit t(1 —eft) t—0- —iet0 —1

and similarly for the right-hand limit. By Weierstrafy’ theorem (on each part),
g(t) is bounded on [—m,m]. We can now condense the long expression into

T p—iNt ™ ei(N+1)t
= t)dt — t)dt 1
[ e [T (19)

—T

However, these terms are precisely the Nth and (—N — 1)th Fourier coefficients
for g, respectively. By corollary to Bessel’s inequality, these tend to 0 as N — oo,
which completes the proof. O



Theorem* (2.2, differentiation of Fourier series). Assume that f is piece-
wise Ct on (—m,7), 2m-periodic and continuous on R. Then the Fourier
coefficients of f: an,bn,c, and those of f': al bl ¢l satisfy

n»rn’

a

!/ / / -
n = Nbn, b, = —nan,, ¢, =incy, (20)

Proof.

1 T -
o =— "(z)e™"* dx (21)

2w ),

LE. % (Wfi/' - /_ :(—ime—mf(:v) dw) (22)

= % (x)e™ " dx = inc, (23)

where the cancellation is by 2m-periodicity, and the other expressions follow
from the relations a,, = ¢, + ¢_p, by, = i(c, — c_p). O

Theorem (integration of Fourier series). Assume that f is piecewise con-
tinuous and 2w-periodic. Define F(z) := fox fit)ydt. As long as ¢g =
= |7 f(x)dz =0, then

Cn ing
F(I) =Cy+ Z %6 (24)
n#0

where Cy = % ffw F(z)dz =0

Remark (Series on arbitrary intervals). One may generalize the coefficent for-
mulas to some interval [a —l,a + ], a € R, [ > 0 (the length is then 21).

a+l
Cp = 211/(1: f(x)e_m(x_“)”/l dx (25)
1 a+l . 1 a+l .
an = /Q_l f(x) cos ((n(m — a)7> dx b, = 7 /a—l f(x)sin (n(m — a)7> dx
(26)

The corresponding series are

Z cnein(m—a)ﬂ'/l (27)

nez

% + Z {an cos ((n(x - a)%) + by, sin ((n(x - a)?)} (28)

n>1



Theorem (Rate of convergence). Assume f is 2m-periodic, f is CF~!
and f*¢=Y 4s pw C' = f is pw C*. Then the Fourier coefficients
Chn = {an,bn,cn} satisfy

Z In*C|? < 0o (29)

nez

Proposition (properties of the inner product). For u,o,w € H,

(i) (u0) = (v,u)
(i) (u+v,w) = (u,w) + (v;w)
(iii) {au,v) = a(u,w), Va € C
(iv) |[ul]® = (wu) = 0, |lu =0 <= u=0

(v) The inner product is continuous: If {un}n>1 and {v,}n>1 are in H, and
limy, ooty = u € H, limy, o0 vy, = v € H, then limy, o0 (Un,vn) = (u,v).

Proposition (Hilbert space propositions). For any Hilbert space H
(i) Cauchy-Schwarz: u,v € H : | (uw) | < ||ull||v]
(ii) Triangle ineq.: u,w € H : ||u+v| < |ull + v

(tit) n-dim Pythagorean Theorem: If {uy}}_, € H are pairwise orthogonal
then [luy + -+ + un | = ua |* + - + un|?
In fact, n may tend to infinity as a consequence of the continuity of the
inner product.

Theorem (Bessel’s inequality redux). Given that {¢,}n>1 is an orthonor-
mal set in a Hilbert space H, then

Vi€H:g:=2 (fdn)bn€H (30)

n>1

and moreover, ||g||*> < || f]I*.

Theorem* (3.4, ONB conditions). If f € H, the following are equivalent:
(i) (fsn) =0Vn = f=0
(’LZ) Zn21 <f7¢)n> ¢n = f

(iii) ||f|I*> = Yons1 [ {(Fon) 7 (Parseval’s equation).




Proof. (i = ii): By Bessel’s ineq. g := anl (f,0n) ¢n € H. Consider

m>1
= <f7 ¢n> - Z <f7¢m> <¢m7¢n> = <f7¢n> - <fa¢n> =0 (32)
e

where it should be noted that the marked eq. uses both linearity and continuity
in the inner product. By (i), (f —g,¢n) =0 = f—g=0 = f =g ie
(ii).

(i = ii1): By (i), f = >_,51 (f.¢n) ¢n. Infinite P.T. implies

AP = D 1600 @all” = D 1 (fidn) Plldnll* = D 1{Fin) 2 (33)

n>1 n>1 n>1
Le. (iii).
(iti = i): If (f.¢) = 0 Vn, and by (ii)) [|f|* = Y,o | (f6n)|> then

[£]I> = 0 and, by definition of ||f||*, f = 0 i.e. (i). This completes the cycle of
implications and therefore the proof of equivalence. O

Theorem* (3.8, best approximation). Let H be a Hilbert space and {¢n }n>1
be an ONS in H. Then VZnZl Cntn € H,c, € CVn > 1 we have

n>1 n>1

with equality iff ¢, = (f,0n) Yn > 1.

Proof. Let fn := (f,¢n). These are the Fourier coeffs. of f w.r.t. {¢n}n>1, and
> n>1 fn@n is the corresponding series. Let g := ) < fa®n, © 1=, 51 Cnbn.

lf=el>=1f—g+g—el>=If —gl*+2Re(f —g.9— )+ g — ¢|* (35)
Consider the centre term:

(f—=9,9—9)={f,g—¢)—(9,9—v) = (f.9) — (f;) — (9,9) + (9:¢) (36)

(1 gt} - (1 T et ) - [ S p (3 . Taren)

n>1 n>1 n>1 m>1 k>1

(37)

ZW—W—WﬂL feaT (bmd) =0 (38)
A n>1 n>1 mk>1 =<

Thus [|f — ¢||* > || f — gl|” with equality iff g — ¢]|* = 0.



2
A (P.T.) A 2 A
lg = l* = [ > = eadon| =73 Fa = enin]| =D 1fa—cal® (39)
n>1 n>1 n>1
ThisisOiff\fn—cn|2:0Vn<:>fn—cn:0Vn<:>fn:chn. O

Corollary. Assume that {¢n} is an orthogonal set. Then the best approz. to
f € H which is of the form Y c,dy is given by taking

(f,én) fn
" = = 40
el lonl’ “0)

Theorem* (3.9ab, SLP facts). Let f and g be eigenfunctions for a regular
SLP on [ab] with w(x) > 0. Then if A\, u are the eigenvalues for f,g
respectively

1. M peR, and

2. X#£pu = (f.9), =0.

Proof. Recall that a regular SLP has self-adjoint boundary conditions, which
guarantees that for all w,w satisfying the b.c. we have (Luyw) = (u,Lv). In
addition, the eigenfunctions are solutions to the problem, i.e. L(f) + Afw =0
and L(g) + pgw = 0 are true.

Using the self-adjoint condition, we obtain two expresssions for (Lf,f):

b
(LF.f) = (~Mfw, f) = A / f@yw@)F@de = -A|fl,  (41)

= (f.Lf) = (f, =Afw) = =X (f, fw) = =X fll,, (42)
= AMIfll, =Afll, = A=) = XAeR (43)

since an eigenfunction must be non-zero and therefore | f|,, > 0.
We apply similar reasoning to (L f,g):
b —_—
(L19) = (Afwg) = -\ [ f@u@g@ds = -Alrg),  (14)
= (f.Lg) = (f, —pgw) = =i (f, gw) = —p(f.9),, (45)
— (f9) = #(f9), 222 (f9), =0 (46)

since we proved above that A\,u € R and it is known that w(x) is real. If the
inner product were not zero a contradiction would occur given that A # p. [



Definition (Fourier transform). Let f € £L1(R), £ € R.

FE) = &) = / ¢ f () da (47)

Definition (Convolution). Assuming the integral converges

T) = /R [z —y)g(y) dy (48)

Proposition (Properties of the convolution). Let f,g,h € L?(R).

(i) |f gl < [ £ll 2 llgll c2

(i) |+ (ag+bh) = a(f * g) + b(f = h), Ya,b € C

(iii) fxg=g=*f

(iv) fx(gxh)=(f*g)*h
Proposition (Properties of the FT). Assume everything is well-defined.
(i) F(f(x = a))(€) = e f(8)
(i) F(f')(€) = isf (&)
(iti) F(xf(x))(€) = iF(f)()
(iv) F(f *9)(&) = F(©)F(©)

Proposition* (Fourier Inversion Theorem). For any f € £L2(R)

1

f)= 5

/ ¢ () de (49)

Theorem* (Plancharel’s Theorem). For any f,g € £?

(£.9) =2m (f.9) (50)
and thus | fl|z =2 | f11Z
Proof.
= » @ 21 i€ f(&) d )d

wlta) =2 [ s@aae D T [ ([ e<fe i) sma o

_ iw€ N N _ —izg y
/R ([ e=<ate dx) foa= [ ([ emsgora)fiorae o2
- [T@Fd = F.9 (58)
and the second statement follows directly by taking f = g. O



Theorem* (7.3, Convolution approximation). Let g € L' (R) with [, g(x)dx =

1. Define o := fi)oo g(x)dz, B = fooo g(x)dz, and g-(x) := g(z/e)/e. Sup-
pose [ is piecewise continuous on R and either (1) f is bounded, or (2) g
vanishes outside a bounded interval. Then

lim ( * g.)(«) = af (x1) + Bf(z_) Vo € R (54)

E—r

where f(xy), f(x_) are shorthands for the left and right hand limits as seen
above. If f is continuous, then lime_o(f * gc)(z) = f(x).

Proof. By definition of convolution, the goal is to prove

e—0

lim [ [ £ =gty - aptes) - 5f<x>] Lo (55)

We may split the integral in 0, such that by the properties of limits (and using
the definitions of a,f3), it is enough to prove separately

i [ 16— atas— [ swstea] 2o (56)
g | (7 s neet - [owsea] Lo 6

We give here the proof for the “right” side — the “left” side is entirely analogous.
For this to be true, a small enough € would allow us to make the expression
as small as demanded. That is, given § > 0, for sufficiently small € > 0

‘ / OOO fe— gty [ Owg<z>f<x+>dz <5 (58)

We change variables in the right integral z := y/e and combine them:

- ‘/_OOO fl@—y)g-(y) dy—/_ooog(y/s)f(m)‘?’ = ‘/_Ooogs(y)(f(w—y) —f(m))dy’

(59)
Note that y <0 = x <z —y, s0o f(x —y) — f(zy) as y — 07. We therefore
split the integral close to zero at some yy < 0 to examine this behaviour

Yo 0
=‘ [ 0@ - - sy + | ga(y)(f(x—y)—f(m))dy‘ (60)

< ‘ [ swire-v- f(m))dy‘ n

— 00

0
[ o) - f(m))dy‘ (61)

0

and estimate each term separately.



Firstly, the integral on (yg,0):

0 0
/ gs(y)(f(:v—y)—f(x+))dy‘< w17 —y) — fap)l| [ g€<y>dy|
Yo y€(¥0,0) Yo
(62)
< swp |f(x—y) - fles) / 0:) dy = (= = y/e} (63)
y€(y0,0) R
= s |fe—9) = f 0l [lo@ld= s (5w -y) - ol < 3
Yy€(y0,0) R Y€ (¥0,0)
(64)

since, by definition of f(x4), we can choose yy < 0 so that the supremum
becomes arbitrarily small, precisely sup¢y, 0 [f(z —y) — f(z4)] < m.

Secondly, the remaining integral, for which we have two cases in the theorem:
Either (1) f is bounded, i.e. IM > 0: |f(z —y)| < M Va,y and |f(zy)] < M.

] " s - - ey

<o [ P ey = = =y/e}  (65)

| 9

Yo/€
— oM / l9(2)] d= < (66)

since, as € — 0%, yg/e — —o0, and the tail of the convergent integral tends to
zero as well. It is sufficient that € is small enough that the tail is < 6/4M; or
(2) without loss of generality, g is zero outside [—R, R].

yo/e

‘/yo 9-(y)(f(x —y) — f(a:+))dy‘ = |/ 9(2)(f(z — e2) — flzy))dz| (67)

— 00 — 00

For yo/e < —R, the integrand is zero. It is sufficient that ¢ < —yo/R since
obviously 0 < §/2 and the integral is bounded by the desired constant.

The sum of these two estimates give the desired estimate for the expression
which completes the proof. O

10



Theorem* (Sampling theorem). Let f € L*(R). Given that 3L > 0 :
f(&) =0Vl > L, then

fy =Y (i Inr ) (69)

ne”Z

Proof. Since fhas compact support, we may expand it in a Fourier series f(x) =
> ez Cn€™™/ L where

L ~
LL/7L f(l‘ —inmz/L dr = 7/.](- z:c (69)
(FIT) 27 nw, _ m, Nnw
= ﬂf(—f)— Lf( L) (70)

We now insert this expression into the Fourier transform (noting that the ex-
change of limits is valid):

1 iy izt 1 b izt
— [ flx)e" de = — f(ac)e dx (71)
™ JR
L
_ i/ Z Cneinﬂ';c/Leixt do = / Z f mmx/L izt dr (72)
T J-L
nez
(e L) ilnm/ Ltz 1
l nm x d J—
n%f /L “TaL Z =7 L’(mr/L + t)L__L
(73)
1 mr glnmtl) _ g—i(nm+tlL) mr sin(nm + tL)
- = _— 74
QLRXG;JC( L i(nm/L +1t) Zf nm +tL (74)
_ B _ mm bln( mm — tL)

meZ

where the substitution in the sum flips the order using the parity (odd) of
sine. O

Definition (Laplace transform). Assume that V¢ < 0: f(¢t) = 0 and Ja,C > 0:
[f(t)] < Ce.

£ﬂ$=7@%=lmf@e“ﬁ (76)

TODO: Laplace properties

11



Definition (Bessel J i.e. fcn of the first kind). Bessel functions are the solutions
to 22f" + af' + (22 — v?)f = 0 for v € C. They may be expressed as

B (_1)k: (%)QkJrV
JA@"‘;;F@rknmk+u+1)

(77)

TODO: Bessel functions definitions and important properties

Theorem* (Generating fcn for J,). For all x and z # 0 the Bessel func-
tions of the first kind satisfy

Z Jn(x)2" = exp (g(z — 271)) (78)

ne”Z

Proof. Split the RHS into two power series:
Tz 1 fxz\J T 1 T\*
oo (5)=25(5)  ewlg)-Xulz) @
§>0 k>0

Combine into the product:

T N (xz) (—1)kak
>0 k>0
(_1)kxj+kzj—k ' (_1)k$n+2kzn
= —_— = = —_ Z =
2 2+ 51k n=j-keZ}=3 > 2D (n + k + 1)K

3,k>0 nEZ k>0
(81)

_ o CDF@/2) R n
=@ _g) KTk +v+1) _HEE:ZJ"(C”)Z (82)
O

12



Definition (Hermite polynomials).

H,(z):= (71)”61‘,2% <ef‘r2) (83)

Theorem* (Orthogonality of Hermite polynomials). The Hermite poly-

nomials are orthogonal on ngp(_mz)(R).

Proof. Without loss of generality, we may assume n > m.

(Hp, Hy), 2 = /R H,(2)Hp(z)e ™™ do (84)
- h (85)

We 2integmte by parts, and use the fact that any polynomial multiplied with

x

e~ " vanishes at infinity:
0 1
n < dnt —z? /
_ e /m = () (@) da
(86)
n o dn_l —x?
= (ot [ e (e )H;n(x) do (87)

We repeat this another n — 1 times for a total of n degrees taken out, applying
similar reasoning for the boundary terms (they vanish). The result is

[eS) ) 0
(~1)2n / e~ HOHTdr = 0 (8)

since deg Hy, () =m < n. O

Theorem* (Generating fen for Hermite polynomials). For any © € R,
z € C, the Hermite polynomials H,(x) satisfy

S oH, (x)%l = 2we?’ (89)

n>0

Proof. By completing the square, exp(2zz — 2?) = exp(—(z — 2)?) exp(2?). Ex-
pand the left factor in a Taylor series about z = 0 (recall the definition):

—(z—2)2 2% _ a? ﬁ ﬁ (=22 _Ju=zr—2 90
‘ ‘ ‘ Z n! |:dzne 2=0 du —dz ( )

n>0

22 (=)™ [ d™ _ 2 def H,(z) ,
— ' —_— — = 1
¢ Z n! dur© A 7;) nl (01)

n>0

using the chain rule and the definition of H, (z). O

TODO: Legendre polynomials, Laguerre polynomials

13



