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Remark (Linear autonomous systems of ODE). We consider the IVP{
x′(t) = Ax(t), x(t) ∈ Rn, t ∈ R
x(τ) = ξ

(?)

where A is a constant n× n-matrix.

Lemma* (Grönwall inequality).

‖x(t)‖ ≤ ‖ξ‖ exp(‖A‖ (t− τ)) (1)

where x, ξ, A, τ are as in (?)

Proof. Suppose that (?) has some solution x(t) on an interval I such that τ ∈ I.
Consider the case when τ ≤ t. The equivalent integral equation becomes

x(t) = ξ +
∫ t

τ

Ax(σ) dσ (2)

Taking the norm, applying the triangle inequality twice and using the definition
of matrix norm yields

‖x(t)‖
∆
≤ ‖ξ‖+

∥∥∥∥∫ t

τ

Ax(σ) dσ
∥∥∥∥ ∆

∫
≤ ‖ξ‖+

∫ t

τ

‖Ax(σ)‖ dσ (3)

≤ ‖ξ‖+
∫ t

τ

‖A‖ ‖x(σ)‖ dσ =: G(t) (4)

We conclude that the RHS (defined as G(t)) satisfies G(τ) = ‖ξ‖ and by the
Fundamental theorem of Calculus

G′(t) = ‖A‖ ‖x(t)‖ ≤ ‖A‖G(t) (5)

Using integrating factor on the inequality we obtain
d

dt
[G(t) exp(−‖A‖ t)] ≤ 0 (6)

By integrating both sides over (τ,t) and reordering one obtains the inequality

G(t) ≤ ‖ξ‖ exp(‖A‖ (t− τ)) (7)

and we are done, since ‖x(t)‖ ≤ G(t) as seen above.

Theorem* (Uniqueness of IVP solutions, linear system). The solution to
(?) is unique.

Proof. Suppose that we have two distinct solutions x(t), y(t) such that x(τ) =
ξ = y(τ) for τ ≤ t. Then, by linearity, z(t) := x(t) − y(t) is a solution, with
z(τ) = 0. By Grönwall’s inequality and properties of norms

‖z(t)‖ ≤ 0 =⇒ ‖x(t)− y(t)‖ = 0 =⇒ x(t) ≡ y(t) (8)

and the solution is unique by contradiction.
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Proposition* (Dimension of solution space, linear system). Let b1, . . . ,bN
be a basis in CN . Then the functions yj : R→ CN defined as solutions to
(?) with yj(τ) = bj, j = 1, . . . ,N , that is

yj(t) = exp(A(t− τ))bj (9)

form a basis for the solution space Shom, and dimShom = N .

Proof. Consider a linear combination of yj(t) equal to zero for some time σ ∈ R.

l(σ) :=
N∑
j=1

αjyj(σ) = 0 (10)

Observe that the trivial (constant zero) solution coincides with l at this time.
By uniqueness, l(t) at arbitrary time t must then coincide with the zero solution
∀t and in particular t = τ . Therefore

l(τ) =
N∑
j=1

αjyj(τ) =
N∑
j=1

αjbj = 0 (11)

and necessarily αj = 0 ∀j since bj form a basis, which by definition implies
y1(t), . . . ,yN (t) are linearly independent ∀t ∈ R.

Arbitrary initial data x(τ) = ξ can be represented in the basis as ξ =∑N
j=1 Cjbj and the construction above shows that arbitrary solutions can be

represented as linear combinations of yj(t):

x(t) = eA(t−τ)ξ = eA(t−τ)
N∑
j=1

Cjbj =
N∑
j=1

Cje
A(t−τ)bj =

N∑
j=1

Cjyj(t) (12)

Thus, {y1(t), . . . ,yN (t)} is a basis for Shom and accordingly dimShom = N .

Corollary* (Sufficient conditions for stability, linear autonomous system).
Let A ∈ CN×N , µA = max{Reλ : λ ∈ σ(A)} where σ(A) is the set of all
eigenvalues to A. Thus µA denotes the maximal real part of the eigenvalues
to A. Then the following statements are valid:

1. ‖exp(At)‖ decays exponentially iff µA < 0.
(∃Mβ > 0, β > 0 s.t. ‖exp(At)‖ ≤Mβe

−βt)

2. limt→∞ ‖exp(At)ξ‖ = 0 for every ξ ∈ Cn iff µA < 0.
(all solutions to x′ = Ax tend to zero)

3. if µA = 0 then supt≥0 ‖exp(At)‖ < ∞ iff all purely imaginary and
zero eigenvalues are semisimple (i.e. no generalized eigenvectors or
alg. mult. is geom. mult.)

Proof. Note that any A ∈ CN×N can be represented as A = TJT−1 where
J is in Jordan canonical form and T is invertible. Furthermore ‖exp(At)‖ =∥∥T exp(Jt)T−1

∥∥ ≤ ‖T‖∥∥T−1
∥∥ ‖exp(Jt)‖.
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Matrices form a finite dimensional linear space and all norms are equivalent;
any two norms ‖·‖1 , ‖·‖2 such that ∃C1,C2 > 0 ∀A : C1 ‖A‖1 ≤ ‖A‖2 ≤ C2 ‖A‖1.

We use the norm ‖A‖max = maxi,j |Aij | (maximum element). Thus, to show
boundedness of ‖exp(Jt)‖ it is sufficient to show boundedness for all elements
in exp(Jt) (and similarly for the behaviour at infinity).

All elements in exp(Jt) have one of the forms exp(λit) or C exp(λit)tp with
some C,p > 0 depending on block (λi may repeat in different blocks). The
absolute values then have the form exp(Reλi ·t) or C exp(Reλi ·t)tp with Reλi ≤
µA since ‖exp(i Imλi · t)‖ = 1.

Sufficiency (1): If µA < 0 then the maximum of the absolute values satisfies
max
i,j
|[exp(Jt)]ij | ≤M exp((µA + δ)t) −−−→

t→∞
0 (13)

tending to zero exponentially for someM > 0 and δ such that −β = µA+δ < 0:
exp(Reλi · t)tp ≤ exp(µAt)tp = exp((µA + δ − δ)t)tp (14)

= exp((µA + δ)t) tp exp(−δt)︸ ︷︷ ︸
→0 =⇒ ≤M

≤M exp((µA + δ)t) = Me−βt (15)

Sufficiency (2): Definition of matrix norm implies that if µA < 0 then
lim
t→∞

‖exp(At)ξ‖ ≤ ‖ξ‖ lim
t→∞

‖exp(At)‖ = 0 (16)

Sufficiency/Necessity (3): If µA = 0 and there are purely imaginary or zero
eigenvalues λ, then elements in the blocks of exp(Jt) will have the form 1 or
Ctp by previous reasoning. Therefore the absolute values of these elements will
be bounded iff no elements with powers of t are present, i.e. the eigenvalues are
semisimple.

Proof of other necessities: see lecture notes (not necessary to learn).

Remark (Inhomogeneous autonomous systems of ODE). We consider the IVP{
x′(t) = Ax(t) + g(t), x(t) ∈ Rn, t ∈ R
x(τ) = ξ

(I?)

where A is a constant n× n-matrix and g : R→ Rn is (piecewise) continuous.

Proposition* (Duhamel’s formula, variant). The unique solution to (I?)
with τ = 0 is

x(t) = eAtξ +
∫ t

0
eA(t−σ)g(σ) dσ

Proof.

x(t) = eAt
(
ξ +

∫ t

0
e−Aσg(σ) dσ

)
(17)

=⇒ x′(t) = AeAt
(
ξ +

∫ t

0
e−Aσg(σ) dσ

)
+ eAte−Atg(t) = Ax(t) + g(t) (18)

for all points where g is continuous.
Now the difference z(t) := x(t)− y(t) between two solutions satisfies z′(t) =

Az(t) and z(0) = 0. Uniqueness for homogeneous systems implies z ≡ 0 and
the solution x(t) is therefore unique.
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Theorem* (Stability of equilibrium points to linear systems perturbed
by a small RHS). Let G ⊂ RN be a non-empty open subset with 0 ∈ G.
Consider {

x′(t) = Ax(t) + h(x)
x(0) = ξ

(P?)

where A ∈ RN×N and h : G→ RN is a continuous function satisfying

lim
z→0

h(z)
‖z‖

= 0. (19)

If A is Hurwitz (Reλ < 0 ∀λ ∈ σ(A)) then 0 is an asymptotically stable
equilibrium of (P?).

Moreover ∃∆ > 0, C > 0, α > 0 ∀ ‖ξ‖ < ∆ : ‖x(t)‖ ≤ C ‖ξ‖ e−αt (for
all solutions x(t) to (P?)).

Proof. If Reλ < 0 ∀λ ∈ σ(A) then ∃β > 0 : Reλ < −β and ‖exp(At)‖ ≤ Ce−βt
for some C > 0. We can choose ε > 0 such that Cε < β and using (19) choose
δε such that for ‖z‖ < δε, z ∈ G it holds that ‖h(z)‖ < ε ‖z‖.

By Picard-Lindelöf we may now conclude that the solution to (P?) exists on
some interval t ∈ [0, δ) and we may apply the Duhamel formula:

x(t) = exp(At)ξ +
∫ t

0
exp(A(t− σ))h(x(σ)) dσ (20)

As long as x(σ) is such that {x : ‖x‖ ≤ δε} ⊂ G the triangle inequality for
integrals applies as follows:

‖x(t)‖ ≤ ‖exp(At)‖ ‖ξ‖+
∫ t

0
‖exp(A(t− σ))‖ ‖h(x(σ))‖ dσ (21)

≤ Ce−βt ‖ξ‖+
∫ t

0
Ce−β(t−σ)ε ‖x(σ)‖ dσ (22)

Let y(t) := ‖x(t)‖ eβt. Multplying by eβt yields

y(t) ≤ C ‖ξ‖+
∫ t

0
(Cε)y(σ) dσ (23)

and the Grönwall inequality implies

‖y(t)‖ ≤ C ‖ξ‖ eCεt =⇒ ‖x(t)‖ ≤ C ‖ξ‖ e−(β−Cε)t (24)

as long as ‖x(t)‖ ≤ δε. Let α = β−Cε > 0 (requiring ε small enough), ∆ = δε

2C
and ‖ξ‖ < ∆. Such a choice implies ‖ξ‖ ≤ δε, if this solution exists.

Important argument. The last estimate in fact implies that the solution must
exist on R+. Suppose that there exists a maximal existence time tmax. Firstly,
using continuity and boundedness of x(t) on [0, tmax) with the integral form
the orbit set {x(t) : t ∈ [0, tmax)} is bounded by ‖ξ‖ ≤ δε. The closure C is
therefore compact and thus h(x) (continuous on G) is bounded on C. Therefore
the following limit exists:

lim
t→tmax

∫ t

0
eA(t−σ)h(x(σ)) dσ. (25)
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For any sequence {tk}∞k=1 such that tk → tmax the sequence of integrals

{Ik =
∫ tk

0
eA(tk−σ)h(x(σ)) dσ}∞k=1 (26)

is a Cauchy sequence because

‖Im − Ik‖ ≤
∥∥∥∥∫ tm

tk

eA(tm−tk−σ)h(x(σ)) dσ
∥∥∥∥ ≤ C|tm − tk| → 0, m,k →∞ (27)

Thus we may extend

x(tmax) = lim
t→tmax

x(t) = lim
t→tmax

(
exp(At)ξ +

∫ t

0
exp(A(t− σ))h(x(σ)) dσ

)
=: η.

(28)
Secondly, using the existence theorem, there is a solution to y′(t) = Ay+h(y) on
[tmax, tmax +δ) with IC y(tmax) = η. This is evidently an extension of x(t) which
contradicts the assumption of a maximal existence time, and thus x(t) may in
fact be extended to R+ still satisfying our desired estimate and the asymptotic
stability in the origin follows.

Corollary (Chapman-Kolmogorov). For all t,σ,τ ∈ J the transition matrix
function Φ(t,τ) satisfies

Φ(t,τ) = Φ(t,σ)Φ(σ,τ) (29)
Φ(τ,τ) = I (30)

Φ(τ,t)Φ(t,τ) = Φ(τ,τ) = I (31)
Φ(τ,t) = (Φ(t,τ))−1 (32)

Theorem* (Floquet representation). Let G ∈ CN×N be a logarithm of the
monodromy matrix Φ(p,0). There exists a periodic (with period p) piecewise
continuously differentiable function Θ : R → CN×N , with Θ(0) = I and
Θ(t) non-singular (invertible, non-zero eigenvalues) for all t, such that

Φ(t,0) = Θ(t) exp
(
t

p
G

)
(33)

Proof. Recall the main property of the monodromy matrix; for τ = 0

Φ(t+ p,0) CK= Φ(t+ p,p)Φ(p,0) S= Φ(t,0)Φ(p,0) (34)

We denote 1
pG =: F for convenience, so that log(Φ(p,0)) = G = pF and let

Θ(t) := Φ(t,0) exp
(
− t
p
G

)
= Φ(t,0) exp (−tF ) (35)

which is well-defined. We now show it has the desired properties: (1) periodicity
p and (2) satisfies the initial condition.

Recall Θ(0) = I and Θ(np) = I, n = 0,1,2 . . .. It holds that Φ(t,0) is
(pw) continuous if A(t) is (pw) continuous. Therefore Θ(t) is (pw) continuous,
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because exp (−tF ) is continuously differentiable. Also, Θ(t) is invertible for all
t as a product of two non-singular matrices.

We now check

Θ(t+ p,0) = Φ(t+ p,0) exp (−(t+ p)F ) = Φ(t+ p,0) exp (−G) exp (−tF ) (36)
=
{
e−G = (eG)−1 = (Φ(p,0))−1 = Φ(0,p)

}
= Φ(t+ p,0)Φ(0,p) exp (−tF ) (37)

M= Φ(t,0)Φ(p,0)Φ(0,p) exp (−tF ) = Φ(t,0) exp (−tF ) = Θ(t). (38)

Theorem* (Floquet multiplier boundedness). The Floquet multipliers are
the eigenvalues of the monodromy matrix. Every solution to a periodic
linear system

(i) is bounded on R+ iff the absolute value of each Floquet multiplier ≤ 1
and any Floquet multiplier with absolute value 1 is semisimple.

(ii) tends to zero as t→∞ iff the absolute value of each Floquet multiplier
is < 1.

Proof. By the Floquet theorem any solution x(t) to x′(t) = A(t)x(t), A(t+p) =
A(t) ∀t ∈ R satisfying x(τ) = ξ is represented as

x(t) = Θ(t) exp(tF )Φ(0,τ)ξ = Θ(t) exp(tF )ζ (39)

where F = 1
p Log(Φ(p,0)), ζ = Φ(0,τ)ξ ∈ RN , and Θ(t) is a p-periodic invertible

(pw) continuous matrix function.
We define y(t) = exp(tF )ζ as a solution to y′ = Fy, y(0) = ζ.

y(t) = Θ−1(t)x(t) ⇐⇒ x(t) = Θ(t)y(t) (40)

The mapping Θ defines a one-to-one correspondence between x and y. Period-
icity and continuity of Θ(t) imply that ∃M > 0 :

‖Θ(t)‖ ,
∥∥Θ−1(t)

∥∥ ≤M ∀t ∈ R =⇒ ‖x(t)‖ ≤M ‖y(t)‖ , ‖y(t)‖ ≤M ‖x(t)‖
(41)

Therefore

(1) ‖x(t)‖ is bounded on R+ iff ‖y(t)‖ =
∥∥etF ζ∥∥ is bounded on R+

(2) ‖x(t)‖ → 0 as t→∞ iff ‖y(t)‖ → 0 as t→∞

Since log(Φ(p,0)) = G = pF , it follows that

σ(Φ(p,0)) = {exp(λp) : λ ∈ σ(F )} (42)
σ(F ) = { 1

p Log(µ) : µ ∈ σ(Φ(p,0))} (43)

when algebraic and geometric multiplicities coincide. Recall Log(z) = ln |z| +
iArg z, exp(z) = exp(Re z)(cos(Im z) + i sin(Im z)). The Floquet multiplier µ
(and the corresponding eigenvalue λ to F) has
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(a) |µ| < 1 iff Reλ < 0

(b) |µ| ≤ 1 iff Reλ ≤ 0

(c) |µ| = 1 and semisimple iff Reλ = 0 and semisimple.

Known relations between solutions to an autonomous system and the spectrum
of corresponding matrix imply properties of y(t) and thus with 1) 2) a) b) c)
imply the theorem.

Remark (Non-linear systems of ODE). We consider the IVP{
x′(t) = f(t,x), f : J ×G→ Rn

x(τ) = ξ
(??)

where J ⊂ R is an interval, G ⊂ Rn open, (τ, ξ) ∈ J×G, f continuous in J×G.

Corollary (‘Eternal life’ of solutions enclosed in compact set). Let x : Iξ → G
be a maximal solution to (??). Suppose that its positive semi-orbit O+(ξ) is
contained in a compact subset C ⊂ G. Then Iξ is infinite to the right (with
respect to J), i.e. J ∩ [τ,∞) ⊆ Iξ. Similar statements apply for the negative
semi-orbit O−(ξ) and backwards time, and the orbit O(ξ) and the whole J .

Proposition* (Extensibility of solutions, linear bound on RHS). Consider
the IVP (??), with f locally Lipschitz in x. Assume that for any compact
interval K ⊂ J there exists L > 0 such that for t ∈ K the RHS does not
grow faster than linearly:

‖f(t,x)‖ ≤ L(1 + ‖x‖). (44)

If x : I → RN is a maximal solution to the equation, then I = J .

Proof. Define ω := sup I, α := inf I. Suppose the statement is false; e.g. ω ∈
J, ω /∈ I, and τ < ω. Choose the constant L such that the estimate above
is valid for t ∈ [τ,ω]. Using the integral form and the triangle inequality for
integrals,

‖x(t)‖ ≤ ‖x(τ)‖+
∫ t

τ

‖f(s,x(s))‖ ds ≤ ‖x(τ)‖+ L

∫ t

τ

(1 + ‖x(s)‖) ds

= ‖x(τ)‖+ L(t− τ) + L

∫ t

τ

‖x(s)‖ ds ∀t ∈ [t,ω)
(45)

By Grönwall’s inequality, ‖x(t)‖ is bounded by some constant C on [t,ω). Thus
the corresponding orbit {x(t) : t ∈ [t,ω)} is bounded by a compact. Lemma 4.9
implies that the solution can be extended to the closed interval [t,ω], and actually
by existence theorem to an even larger interval beyond, which contradicts the
supposition that I is a maximal interval.

The proof is analogous for α ∈ J, α /∈ I, and τ > α.
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Proposition (Properties of ω-limit sets). Let ξ ∈ G. Let the closure of the
positive semi-orbit O+(ξ) be compact and contained in G. Then R+ ⊂ Iξ and
the ω-limit set Ω(ξ) ⊂ G is (1) non-empty, (2) compact, (3) connected, (4) in-
variant (both positively and negatively) under the local flow, and (5) trajectories
approach Ω(ξ) as t→∞.

Theorem (Poincaré-Bendixson). Suppose that ξ ∈ G ⊂ R2 is such that
the closure of the positive orbit O+(ξ) is compact and contained in G, and
the ω-limit set Ω(ξ) does not contain any equilibrium points. Then Ω(ξ) is
an orbit of a periodic solution.

Proposition* (Bendixson’s criterion for non-existence of periodic solu-
tions). Let x′ = f(x) = [f1(x), f2(x)]T with f : G → R2, G ⊂ R2 open,
f ∈ C1(G) (although in pratice locally Lipschitz suffices), and let D ⊂ G be
a simply connected domain.

Suppose that ∇ · f = ∂f1
∂x1

+ ∂f2
∂x2

is strictly positive (or strictly negative)
in D. Then the equation has no periodic solutions with orbits inside D.

Proof. Suppose it were not so; that there is a periodic trajectory x(t) with period
T > 0 in D and x(t + T ) = x(t). Denote x′1(t) = f1(x(t)), x′2(t) = f2(x(t)),
and the orbit of x(t) by L = {x(t) : t ∈ [0,T ]}. It will be a closed simple curve.
Denote the interior domain by Ω. Since D ⊃ Ω is simply connected ∂Ω = L.
By Gauss theorem:

I :=
∫∫

Ω
∇ · f dx1dx2 =

∫
∂Ω
f · ndl (46)

where n is the outward normal to the boundary ∂Ω. Note f(x(t)) = x′(t) on
∂Ω = L because it is an orbit. Therefore f(x(t)) is the tangent vector to ∂Ω,
f ⊥ n, and I = 0. On the other hand ∇ · f > 0 (or < 0) in the whole D ⊃ Ω.
Therefore the integral I over a bounded domain Ω must be strictly positive (or
negative), which is a contradiction, and the system cannot have a periodic orbit
in D.

Theorem* (Stability by Lyapunov function). Consider the system x′ =
f(x), f : G → RN locally Lipschitz continuous, G ⊂ RN open. Let 0 ∈ G
be an equilibrium point. Suppose there exists V : U → R positive definite
continuously differentiable (C1(U)) such that U ⊂ G, 0 ∈ U and

dV

dt
= Vf (z) = ∇V · f(z) ≤ 0 ∀z ∈ U (47)

Then 0 is a stable equilibrium point.

Proof. Take arbitrary ε > 0 such that B(ε,0) ⊂ U . Let α := minz∈∂B(ε,0) V (z),
which exists since the sphere ∂B(ε,0) is compact and V continuous. Then
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α > 0 because V (z) > 0 outside the equilibrium point. By continuity of V and
V (0) = 0 one can find δ ∈ (0,ε) such that ∀ ∈ B(δ,0) it holds that V (z) < α/2.

On the other hand, for any part of the trajectory x(t) = ϕ(t,ξ) inside U ,
the function V (ϕ(t,ξ)) is non-increasing because V̇ (ϕ(t,ξ)) ≤ 0. Therefore all
trajectories ϕ(t,ξ) with initial condition ξ ∈ B(δ,0) satisfy V (ξ) < α/2, implying
V (ϕ(t,ξ)) < α/2 and ϕ(t,ξ) cannot reach ∂B(ε,0) where V (z) ≥ α. Any such
trajectory therefore stays within B(ε,0) and the equilibrium point is stable by
definition. Also, R+ ⊂ Iξ, since the trajectory stays inside a compact set.

Theorem* (LaSalle’s invariance principle). Suppose f : G→ Rn is locally
Lipschitz and let ϕ(t,ξ) denote the flow generated by the system x′ = f(x).
Let U ⊂ G be non-empty and open. Let V : U → R continuously differen-
tiable such that Vf (z) ≤ 0 for all z ∈ U . If ξ ∈ U is such that the closure
of the positive semi-orbit O+(ξ) is compact and contained in U , then

(i) R+ ⊂ Iξ, the maximal interval for IC ξ

(ii) as t → ∞, ϕ(t,ξ) approaches the largest invariant set contained in
V −1
f (0) = {z ∈ U : Vf (z) = 0}.

Proof. Let x(t) := ϕ(t,ξ). By continuity of V and compactness of the closure
O+(ξ), V is bounded on O+(ξ) and therefore the function V (x(t)) is bounded.
Since d

dtV (x(t)) = Vf (x(t)) ≤ 0 ∀t ∈ R+, V (x(t)) is non-increasing. We con-
clude that limt→∞ V (x(t)) must exist and is finite =: λ.

Take an arbitrary z ∈ Ω(ξ) (the ω-limit set). By definition, there exists a
sequence {tk} ∈ R+ such that tk →∞ as k →∞ and x(tk)→ z as k →∞. By
continuity of V ,

V (z) = lim
k→∞

V (x(tk)) = lim
t→∞

V (x(t)) = λ (48)

Consequently, V (z) = λ ∀z ∈ Ω(ξ)!
By the invariance of Ω(ξ) with respect to ϕ, if z ∈ Ω(ξ) then ϕ(t,z) ∈

Ω(ξ) ∀t ∈ R. Hence, V (ϕ(t,z)) = λ ∀t ∈ R, and furthermore

Vf (ϕ(t,z)) = d

dt
V (ϕ(t,z)) = d

dt
λ = 0 ∀t ∈ R (49)

Since ϕ(0,z) = z and z ∈ Ω(ξ) is arbitrary it follows that Vf (z) = 0 ∀z ∈ Ω(ξ)
and hence Ω(ξ) ⊂ V −1

f (0).
The statement now follows from the main theorem about limit sets (4.38)

that states Ω(ξ) is invariant and x(t) approaches Ω(ξ) as t→∞.

Lemma (Banach contraction principle). Let A be a non-empty closed subset of
a Banach space X and K : A→ A be a a contraction operator with contraction
constant θ < 1, i.e.

‖K(x)−K(y)‖X ≤ θ ‖x− y‖X ∀x,y ∈ A. (50)

Then there is a unique fixed point x ∈ A to K such that K(x) = x and

‖Kn(x0)− x‖X ≤
θn

1− θ ‖K(x0)− x‖X ∀x0 ∈ A (51)

where Kn = K ◦ · · · ◦K applied n times.
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Theorem* (Picard-Lindelöf). Let J ⊂ R be an interval, G ⊂ Rn be open,
τ ∈ J , ξ ∈ G, f be continuous in J×G. If f is Lipschitz with respect to x ∈
G with Lipschitz constant L > 0, there is a unique solution x : I → Rn to
the IVP. (A stronger version uses local Lipschitz conditions, and combines
the theorem about maximal extensions.)

Proof. Consider the operator derived from the integral form of the correspond-
ing IVP:

K(x)(t) = ξ +
∫ t

τ

f(s,x(s)) ds (52)

on the Banach space of continuous functions x : I → Rn on some compact
interval I ⊂ J . Let I = [τ, τ + T ] ⊂ J , for some T > 0. (Considering the
backwards direction is done in a similar way.)

Firstly, we find conditions on T and a subset A ⊂ C(I) such that K maps
A to itself: K : A → A. Choose first a closed ball B(ξ,δ) = {x : ‖x− ξ‖ ≤ δ}
such that it belongs to G. The function f(t,x) is continuous on the compact set
V = I ×B(ξ,δ) ⊂ Rn+1 and therefore

M := sup
(t,x)∈V

‖f(t,x)‖ <∞. (53)

Then,

‖K(x(t))− ξ‖ =
∥∥∥∥∫ t

τ

f(s,x(s)) ds
∥∥∥∥ ≤ ∫ t

τ

‖f(s,x(s))‖ ds ≤ TM (54)

so by choosing T < δ/M it holds that ‖K(x(t))− ξ‖ ∀t ∈ I. Taking the
supremum of both sides yields

sup
t∈I
‖K(x(t))− ξ‖ = ‖K(x)− ξ‖C(I) ≤ δ (55)

and hence the operator K maps the closed ball A ⊂ C(I) defined by the in-
equality ‖x− ξ‖C(I) ≤ δ (when T < δ/M) into itself (K : A→ A).

Secondly, we find conditions on T such that K is a contraction on the subset
A ⊂ C(I). Consider the difference between two x,y ∈ C(I), applying the
triangle inequality and the Lipschitz property for the appropriate estimation:

‖K(x(t))−K(y(t))‖ =
∥∥∥∥∫ t

τ

f(s,x(s))− f(s,y(s)) ds
∥∥∥∥

∆
≤
∫ t

τ

‖f(s,x(s))− f(s,y(s))‖ ds
L
≤ L

∫ t

τ

‖x(s)− y(s)‖ ds

∆
∫
≤ LT sup

s∈I
‖x(s)− y(s)‖ = LT ‖x− y‖C(I)

(56)

which implies that for T < 1/L the contraction property holds.
Therefore, choosing T < min{δ/M, 1/L} we conclude that the operator K

maps the closed ball A = {x ∈ C(I) : ‖x− ξ‖C(I) ≤ δ} into itself (K : A→ A)
and that K is a contraction on A, i.e. ‖K(x)−K(y)‖C(I) ≤ θ ‖x− y‖C(I) , θ <
1, for any x,y ∈ A. By the Banach contraction principle K has for T <
min{δ/M, 1/L} a unique fixed point x ∈ A that is the solution to the IVP.
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