
A Brief Review of

Linear and Integer Optimization with Applications
MVE165/MMG631

Ruben Seyer <rubense@student.chalmers.se>

4th June 2020

Contents

Preface 4

1 Linear programming 5
1.1 Preliminaries . 5
1.2 Basic solutions . 6

1.2.1 Algebraic description . 6
1.3 The simplex method . 7

1.3.1 Phase I problem . 8
1.3.2 Degeneracy and convergence 8
1.3.3 Multiple optimal solutions 8
1.3.4 Unbounded solutions . 8

1.4 Duality . 8
1.4.1 Constructing the dual program 9
1.4.2 Properties . 9

1.5 Post-optimal sensitivity analysis . 10
1.5.1 Changes in right-hand-side coefficients 10
1.5.2 Changes in the objective coefficients 10

2 Discrete and combinatorial optimization 11
2.1 Relaxations . 11

2.1.1 LP-relaxation . 11
2.1.2 Combinatorial relaxation 11
2.1.3 Lagrangean relaxation . 12

2.2 Branch-and-bound— Enumeration 12
2.3 Cutting plane algorithms . 13

1

mailto:rubense@student.chalmers.se

2.4 Heuristic algorithms . 14
2.4.1 Constructive heuristics . 15
2.4.2 Local search . 15
2.4.3 Approximation algorithms 15
2.4.4 Metaheuristics . 16

3 Network flows 16
3.1 Shortest path . 16

3.1.1 ‘Stretch’ model (dual) . 16
3.1.2 Flow model (primal) . 17

3.2 Maximum flow . 17
3.2.1 Edmonds-Karp algorithm 18
3.2.2 Minimum cut— LP dual 18
3.2.3 General minimum cost network flow problems 19

4 Multi-objective optimization 19
4.1 Solution methods . 20

4.1.1 ε-constraints method . 20
4.1.2 Weighted objectives . 20
4.1.3 Soft constraints . 20

4.2 Normalization . 21

5 Non-linear optimization 21
5.1 Definitions . 22
5.2 Convex optimization problems . 22
5.3 Karush-Kuhn-Tucker (KKT) conditions 23
5.4 General iterative search method . 23

5.4.1 Search direction . 23
5.4.2 Step length— line search 24
5.4.3 Termination criterion . 24

A Particular problems 25
A.1 Standard ILP models . 25

A.1.1 Common 0-1 constraints 25
A.1.2 Knapsack problem . 25
A.1.3 Assignment problem . 26
A.1.4 Set covering problem . 26

A.2 Travelling salesman—TSP . 27
A.2.1 ILP formulation . 27
A.2.2 Heuristics . 27
A.2.3 Specialized Branch-and-bound 27

2

A.2.4 MST approximation . 28
A.3 Graph problems . 28

A.3.1 Minimum spanning tree —MST 28
A.3.2 Shortest path . 28

List of Theorems and Algorithms 30

3

Preface

A few short remarks about this document are in order. Of importance is the fact that
it in no manner claims to be a complete treatise on the subjects contained within, but
rather an overview of theory, results and methods for practical purposes. In many cases,
a thorough understanding of the subject may already be required to make sense of the
brief descriptions within. For that reason, frequent references to the course material
that expand on mentioned subjects are contained within. Roman sans-serif numbers
set in brackets (e.g. [I]) denote a particular lecture given. Arabic sans-serif numbers set
in brackets (e.g. [1]) denote a particular section of Optimization by J. Lundgren, M.
Rönnqvist, and P. Värbrand.

A short summary of the material covered at the oral exam and the rough structure of
this document follows:

• Mathematical modelling of optimization problems: graphic solution

• Linear programming: BFSs, the simplex method, degeneracy, multiple optima,
unbounded solution, infeasibility, starting solutions, LP duality, post-optimal and
sensitivity analysis

• Discrete and combinatorial optimization: models of specific ILP problems, math-
ematical properties, complexity, algorithms, local/global optima, neighbourhoods,
heuristics

• Network flows: shortest paths, dynamic programming, LP models of network
flows, maximum flows, minimum cost network flows, unimodularity, integrality
property

• Multi-objective optimization: Pareto optimality, (non-)convexity, solution meth-
ods, objective space representation

• Non-linear optimization: convexity, local/global optimality, mathematical proper-
ties, search methods

Some content pertaining to specific problems or models has been extracted into an
appendix, but makes it no less important to the course material.

Finally, no author is perfect and the present one constitutes no exception. This
document is prone to revision and the reader should ensure through the date that it is in
fact the most recent version. From the author’s website, the most recent version is always
available. Questions, corrections and remarks are always welcome and will be thankfully
credited should they lead to valuable changes. We hope you find this document useful.

4

1 Linear programming

1.1 Preliminaries

Definition 1.1 (Linear program). A linear program (LP, linear optimization problem)
is an optimization problem where all relations are described by linear forms. In general,
such a problem is formulated

min /max z = cTx c,x ∈ Rn

s.t. Ax ≤ b A ∈ Rn×m

x ≥ 0 b ∈ Rm.

(1.1)

Any relation may be rewritten into an inequality as above. Non-negativity constraints
are not necessary, but are usually assumed. [III]

The feasible region of a LP is defined as the intersection of half-spaces inRn defined
by its constraints.

X := {x ≥ 0 : Ax ≤ b} (1.2)

It can easily be shown by application of the definition that the feasible region of a LP
forms a convex set.

Definition 1.2 (Convex combinations). A convex combination of the points xp ∈
Rn, p = 1, . . . , P is any point x ∈ Rn that can be expressed as

x =

P∑
p=1

λpx
p (1.3)

where the convexity weights satisfy
∑P

p=1 λp = 1, λp ≥ 0 ∀p. [III] [4.1]

Definition 1.3 (Convex set). AsetX ∈ Rn is a convex set if, for any twopointsx1,x2 ∈
X , and any λ ∈ [0, 1], it holds that x := λx1 + (1− λ)x2 ∈ X . [III] [2.4]

Definition 1.4 (Extreme point). The pointxk ∈ X is an extreme point of the polyhed-
ronX if it is not possible to express xk as a strict convex combination (with non-integer
weights) of two distinct points inX . [III] [4.1]

Theorem 1.1 (Optimal solution in an extreme point). Suppose that the feasible region
X = {x ≥ 0 : Ax ≤ b} is non-empty and bounded. Then, the minimum value of the
objective cTx =: z∗ is attained at (at least) one extreme pointxk ofX . [III] [4.1 Th. 2.4]

Proof. Suppose that it were not so; that there exists a non-extreme point x̃ ∈ X with a
lower objective value than any of the extreme points, i.e. cTx̃ < cTxk for all extreme

5

points xk ∈ X . SinceX is a convex set, x̃may be expressed as a convex combination of
the extreme points ofX with some weights λk. Then,

cTx̃ = cT
∑
k

λkx
k =

∑
k

λkc
Txk >

∑
k

λkc
Tx̃ = cTx̃ E (1.4)

which is a contradiction.

The main method of solving LPs is to use the simplex method. To that end, we
must reformulate our problems in the standard form. One may translate any LP to the
standard form by some simple manipulations:

• in all inequalities, introduce slack variables (negative-signed surplus variables in
the case of greater-than) and convert to an equality

• replace non-positive variables with the corresponding sign change

• replace unconstrained variables with the difference between two new non-negative
variables

1.2 Basic solutions

Definition 1.5 (Basic solution). A basic solution to them × n system of equations
Ax = b is obtained if n −m of the variables are set to 0 and the remaining variables
obtain unique values from the solution to the remainingm×m system of equations.

The variables set to 0 are called non-basic variables and the remaining are called basic
variables. [III] [4.3 Def. 4.3]

A basic solution x corresponds to the intersection ofm hyperplanes in Rm. The
solution is feasible if x ≥ 0. However, each extreme point of the feasible set also satisfies
these conditions.

1.2.1 Algebraic description

Consider a standard linear minimization problem. We partition x intom basic variables
xB and n −m non-basic variables xN , such that xT = (xT

B,x
T
N). Analogously, let

cT = (cTB, c
T
N) andA = (AB, AN) =: (B,N). Assume thatB is non-singular, i.e.

its inverseB−1 exists. We may now rewrite the standard problem into

min z = cTBxB + cTNxN

s.t. BxB +NxN = b

xB,xN ≥ 0.

(1.5)

The basic variables can be substituted away by rewriting the constraints

xB = B−1(b−NxN) (1.6)

6

and finally
min z = cTBB

−1b+ (cTN − cTBB
−1N)xN

s.t. B−1b−B−1NxN ≥ 0

xN ≥ 0.

(1.7)

At any basic solution, the non-basic variables are zero, soxB = B−1b and z = cTBB
−1b.

The solution is feasible ifB−1b ≥ 0.

1.3 The simplex method

Algorithm 1.1 (The simplexmethod). Consider a standardminimizationLP. Iteratively
find basic feasible solutions with better objective values. [IV] [4.4] [4.6]

1. Choose any feasible basis and construct the corresponding basic solution.

2. Select a non-basic variable xj to enter the basis using the optimality condition
(largest negative reduced cost, i.e. fastest objective value change).

j = argmin
j∈N

[cTN]j − cTBB
−1Nj (1.8)

If no value is negative, the basis is optimal and we are done. In a maximization
problem, find instead the largest positive marginal value.

3. Select a basic variable xi to leave the basis using the feasibility condition (smallest
non-negative quotient i.e. first violated constraint)

i = argmin
j∈B

{
[B−1b]i
[B−1N]ij

: [B−1N]ij > 0

}
(1.9)

4. Compute the new basic solution by performing the swap and matrix operations,
then go to 2.

The simplex tableau at any particular iteration is displayed in table 1.

Table 1: Simplex tableau at BFS (B,N). The slack column s contains copies of certain
columns from (xB,xN) (if applicable).

basis z xB xN s RHS
z 1 0 −(cTN − cTBB

−1N) cTBB
−1 cTBB

−1b

xB 0 I B−1N B−1 B−1b

When some non-basic variable j is entering the basis, the search direction can be
computed as

d = (dB, dN)T = (−B−1Nj , ej)
T (1.10)

where ej is a standard basis vector such that the component corresponding to the variable
is one and the rest zero andNj = Nej (the corresponding column).

7

1.3.1 Phase I problem

Suppose one could not easily find an initial basic feasible solution. Assuming that b ≥ 0,
we introduce an artificial variable ai in each row lacking an unit column and obtain a
phase I-problem to solve:

min w = 1Ta

s.t. Ax+ Ia = b

x,a ≥ 0.

(1.11)

If a feasible solution exists, we obtain the optimal valuew∗ = 0 and the corresponding
optimal basic solution is feasible in the original problem. Otherwise, by construction,
there exists no feasible solution to the original problem.

1.3.2 Degeneracy and convergence

If the smallest non-negative quotient in the feasibility condition is zero, the value of a
basic variable will become zero in the next iteration and we obtain a degenerate solution.
This occurs when a redundant constraint ‘grazes’ the feasible set. No improvement in
objective value is made and we risk cycling around non-optimal bases. To avoid this,
we may change the criteria (e.g. Bland’s rule which sorts) or perturb the RHS (modern
software).

Remark. If all of the basic feasible solutions are non-degenerate, then the simplex al-
gorithm terminates after a finite number of iterations.

1.3.3 Multiple optimal solutions

If the entering variable has zero reduced cost, then there are multiple optimal extreme
points. All points on the edge between the optimal extreme points are optimal.

1.3.4 Unbounded solutions

If all quotients in the feasibility condition are negative, the value of the entering variable
may increase indefinitely. Thus, the feasible set is unbounded.

1.4 Duality

The dual LP is derived from the original primal LP such that their solutions both
yield information about the problem. When then primal problem is interpreted as the
production problem, the dual problemmay be interpreted as the market problem. One
can also see the dual variables as the weights of the constraints in the primal problem.

Remark. The dual of the dual is the primal.

8

1.4.1 Constructing the dual program

We invert the problem sense, take the transpose of the constraint coefficients, and swap
objective coefficients and RHS. Then we apply the translation rules in table 2. For a
standard problem, this implies

min z = cTx max w = bTy

s.t. Ax ≤ b ⇐⇒ s.t. ATy ≤ c

x ≥ 0 y ≤ 0

(1.12)

Table 2: Translation rules for construction of the dual program [V] [6.2]
maximization constraints variables
dual/primal ≥ ≤ = ≥ 0 ≤ 0 free

minimization variables constraints
primal/dual ≤ 0 ≥ 0 free ≥ ≤ =

1.4.2 Properties

Theorem 1.2 (Weak duality). Consider (1.12). Let x be a feasible point in the primal
and y be a feasible point in the dual. Then it holds that z = cTx ≥ bTy = w, i.e. the
dual optimum gives an optimistic estimate of the primal optimum. [V] [6.3 Th. 6.1]

Proof.
z = cTx ≥ yTAx ≥ yTb = w. (1.13)

Corollary 1.3 (Optimality byweak duality). Ifx is feasible in the primal andy is feasible
in the dual, and it holds that cTx = bTy, thenx is optimal in the primal andy is optimal
in the dual. [V] [6.3 Th. 6.2]

Theorem 1.4 (Strong duality). In a pair of primal and dual LPs, if one of them has a
bounded optimal solution x̂ (or ŷ), so does the other i.e. ŷ (or x̂), and their optimal values
are equal: cTx̂ = bTŷ. [V] [6.3 Th. 6.3]

Theorem 1.5 (Complementary slackness). Ifx is optimal in the primal andy is optimal
in the dual, then it holds that

xT(c−ATy) = yT(b−Ax) = 0. (1.14)

If x and y are feasible in their respective problems, and the above holds, then x and y are
optimal in their respective problems. [V] [6.3 Th. 6.5]

9

This implies that if yi > 0 for some i, then the slack si in the corresponding primal
constraint must be zero (the constraint is active).

Corollary 1.6 (Duality theorem). Suppose that xB = B−1b is an optimal BFS to the
primal problem (1.5). Then yT = cTBB

−1 is an optimal solution to the dual problem and
z∗ = w∗. [V] [6.3 Th. 6.4]

Note that the optimal solutions to the dual variables correspond to the cost coeffi-
cients in the simplex tableau for the slack variables in the optimal BFS. Some relations
between corresponding primal and dual optimal solutions are listed in table 3.

Table 3: Relations between primal and dual optimal solutions [V]
primal (dual) problem ⇐⇒ dual (primal) problem

unique, non-degenerate solution ⇐⇒ unique, non-degenerate solution
unbounded solution =⇒ no feasible solution
no feasible solutions =⇒ unbounded/no feasible solution
degenerate solutions ⇐⇒ alternative solutions

1.5 Post-optimal sensitivity analysis

Assume that the basis in (1.7) is optimal.

1.5.1 Changes in right-hand-side coefficients

Definition 1.6 (Shadow price). The shadow price of a constraint is defined as the change
in the optimal value as a function of the (marginal) change in the RHS. It equals the
optimal value of the corresponding dual variable yT = cTBB

−1. [VI] [5 Def. 5.3]

Suppose b changes to b+∆b. The new optimal value becomes

znew = cTBB
−1(b+∆b) = z + cTBB

−1∆b (1.15)

and the current basis is still feasible ifB−1(b +∆b) ≥ 0. Otherwise, we find a new
solution using the dual simplex method. [7.3]

1.5.2 Changes in the objective coefficients

Definition 1.7 (Reduced cost). The reduced cost of a non-basic variable defines the
change in the objective value when the value of the corresponding variable is (mar-
ginally) increased. The basis B is optimal if the reduced costs are non-negative, i.e.
cTN − cTBB

−1N ≥ 0. [VI]

10

Suppose c changes to c+∆c. The new optimal value becomes

znew = (cB +∆cB)
TB−1b = z +∆cTBB

−1b (1.16)

and the current basis is optimal if

(cN +∆cN)T − (cB +∆cB)
TB−1N ≥ 0. (1.17)

2 Discrete and combinatorial optimization

Consider the standard minimization ILP
min z = cTx c,x ∈ Rn

s.t. Ax ≤ b A ∈ Rn×m

x ≥ 0, integer b ∈ Rm.

(2.1)

Contrary to (1.1), adding integrality requirements results in a non-convex feasible set
X := {x ∈ Zn

+ : Ax ≤ b}. One can no longer prove optimality using strong
duality/complementarity as used in solving LP problems.

Instead we find bounds on the optimal value z∗ and try to reconcile them. We may
obtain an optimistic estimate z ≤ z∗ from a relaxation of (2.1), and a pessimistic estimate
z ≥ z∗ from any feasible solution to (2.1). If z − z ≤ εwe can conclude that the value
of our solution candidate x is at most ε from z∗.

We cover several different methods used in the solution of ILPs.

2.1 Relaxations

To relax an ILP, one can enlarge the feasible setX by removing constraints, replace the
objective function cTx by an underestimating (in the minimization case) function f

such that f(x) ≤ cTx for all x ∈ X , or do both. [VIIIa] [14.2]

2.1.1 LP-relaxation

A common and simple method of relaxation is to simply consider the problem without
integrality. If X := {x ∈ Zn

+ : Ax ≤ b}, and XLP := {x ≥ 0 : Ax ≤ b},
then clearly X ⊆ XLP and we have enlarged the feasible set. It must then hold that
minx∈XLP cTx =: zLP ≤ z∗ (or the corresponding relation for a maximization).

Such a relaxation is called theLP-relaxation. It has the addedbenefit of being relatively
easy to solve compared to the original problem, as we now have a convex feasible set.

2.1.2 Combinatorial relaxation

We may enlarge the feasible set by neglecting one or more constraints in the problem.
Such a relaxation is called a combinatorial relaxation and may be of interest in particular
problems.

11

2.1.3 Lagrangean relaxation

Lagrangean relaxation allows us to obtain optimistic estimates of the optimal object-
ive value z∗ in the face of complicating constraints in the problem. Consider an ILP
formulated as

min z = cTx

s.t. Ax ≤ b

Dx ≤ d

x ≥ 0, integer

(2.2)

wherein the constraintsAx ≤ b are considered complicating. LetX := {x ∈ Zn
+ :

Dx ≤ d} be the feasible set w.r.t. the remaining constraints, and allow violating the
complicating constraints by paying a penalty in the dual function

h(v) = min
x∈X

{cTx+ vT(Ax− b)} (2.3)

(pay attention to the signs of the constraints and v). For each value of v we thus obtain a
subproblem. [IX] [17.1–2]

Theorem 2.1 (Weak duality of Lagrangean relaxation). For arbitrary v ≥ 0 it holds
that h(v) ≤ z∗.

Proof. Let x be feasible in (2.2), i.e. both x ∈ X andAx ≤ b hold. Then

h(v) ≤ cTx+ vT(Ax− b) ≤ cTx. (2.4)

Since anoptimal solutionx∗ to (2.2) also is feasible it holds thath(v) ≤ cTx∗ = z∗.

Such a lower bound may be used to e.g. cut branches or compare solutions. The best
lower bound is provided by solving the dual problem h∗ = maxv≥0 h(v). There exist
special algorithms for this purpose (e.g. subgradient optimization). The dual function h
is always concave but typically non-differentiable (it is piecewise linear).

In general, ILPs typically show a non-zero duality gap z∗ − h∗ > 0. Furthermore,
the bound is never worse than the LP relaxation bound zLP ≤ h∗ ≤ z∗. IfX has the
integrality property, they are equal.

2.2 Branch-and-bound — Enumeration

A branch-and-bound algorithm (also known as implicit enumeration and tree search) is a
divide and conquer approach to finding optimal solutions to optimization problems with
integrality requirements. The general idea is to efficiently enumerate feasible solutions
by successive partitioning of the feasible set in a search tree, and pruning branches using
approximations provided by relaxations of the problem.

12

Wemay construct an algorithm by deciding on the relaxation, the branching strategy
(e.g. fractional values, subtours), the tree search strategy (e.g. depth-, breadth-, best-first),
and the pruning criteria. [VIIIa] [15]

Algorithm 2.1 (Land-Doig-Dakin B&B). Consider a minimization ILP. LetPk denote
the kth subproblem. We leave the branching strategy (on which variable) and the search
strategy undetermined.

0. Let n = 0, k = 0 and initialize the tree with a single node P0 containing the
original problem. Set the pessimistic estimate z with some heuristic, e.g. any
feasible solution, or simply z = +∞.

1. Solve the LP relaxation of Pk. The solution xk yields a local optimistic estimate
zk in the subtree.

2. If Pk has no feasible solution; go to step 6.

3. If zk > z we cannot improve our bounds; go to step 6.

4. If xk is integer we cannot improve our bounds. If zk < z we update the global
pessimistic estimate to zk and xk becomes our new candidate x̂. Go to step 6.

5. Choose a non-integer variable xj and construct the two new subproblems

Pn+1 : Pk with xj ≤
⌊
xkj

⌋
, Pn+2 : Pk with xj ≥

⌈
xkj

⌉
,

letting n := n+ 2. Node Pk is now visited.

6. If no unvisited nodes remain, we are done and the optimal solution is x̂ with
optimal value z. Else, select the next unvisited node Pk and go to step 1.

2.3 Cutting plane algorithms

The ideal formulation of an ILP is one where the set defined by the constraints in the
LP relaxation is exactly the convex hull of the feasible set in the ILP. Such an ideal linear
program has integer extreme points and can thus be solved quickly using the simplex
algorithm. [IX] [14.3]

By adding valid inequalities, i.e. constraints satisifed by the feasible set in the ILP
but eliminate some fractional solutions, we can approach an ideal formulation of the
problem. Unfortunately, very many cuts may be needed. For faster convergence we
should ensure that each added cut passes through at least one integer point. Pure cutting
plane algorithms are usually less efficient than branch-and-bound, but are used with good
results in presolve stages by solvers. [IX] [14.4]

Algorithm 2.2 (Gomory’s cutting plane algorithm). [14.5.1]

13

1. Solve the LP relaxation.

2. If the LP solution is integer, we have found an optimal solution to the ILP.

3. Consider the optimal basisB:

xB +B−1NxN = B−1b. (2.5)

For all i ∈ B, let aij = (B−1N)ij and bi = (B−1b)i, then

xi +
∑
j∈N

aijxj = bi. (2.6)

Consider an i ∈ B such that bi is non-integer and define the fractions

b̃i := bi −
⌊
bi
⌋
∈ (0, 1) (2.7)

ãij := aij − baijc ∈ [0, 1), j ∈ N. (2.8)

From (2.5) it follows

xi +
∑
j∈N

baijcxj −
⌊
bi
⌋
= b̃i −

∑
j∈N

ãijxj . (2.9)

By construction, the LHS of (2.9) is integer, so the RHS must also be integer.
Since b̃i < 1, ãij ≥ 0, and xj ≥ 0, j ∈ N , it then follows that

b̃i −
∑
j∈N

ãijxj < 1 =⇒ b̃i −
∑
j∈N

ãijxj ≤ 0 (2.10)

and we have derived the valid inequality
∑

j∈N ãijxj ≥ b̃i. The current basic
solution will become infeasible.

4. Resolve the new problem and go to step 2.

2.4 Heuristic algorithms

We preface this section with a few definitions. Consider, with the necessary definitions
implied, a minimization problemminx∈X cTx.

Definition 2.1 (Global minimum). An x∗ ∈ X such that ∀x ∈ X : cTx∗ ≤ cTx.

Definition 2.2 (ε-neighbourhood of x). Nε(x) = {x ∈ X : ‖x− x‖ ≤ ε}where
ε ≥ 0, and the distance measure ‖·‖may be freely defined, e.g. Hamming, Euclidean,
Manhattan, TSP interchanges...

Definition 2.3 (Local minimum). An x ∈ X such that ∀x ∈ Nε(x) : c
Tx ≤ cTx,

for some ε > 0.

14

Theorem 2.2 (Optima in convex problems). For a convex problem, any local optimum is
also a global optimum.

Heuristic algorithms are an opportunity to allow acceptable locally optimal solutions
to otherwise intractable problems. While LP problems are convex (since the feasible set
is convex and the objective function is linear and a fortiori convex) general ILP/BLPs
are non-convex. Non-convex optimization problems do not fulfil strong duality, which
means that one cannot in general construct (efficient) algorithms to fulfil optimality
conditions. [X] [16]

2.4.1 Constructive heuristics

The algorithm begins with an ‘empty set’ and ‘adds’ elements according to some (simple)
rule. Any greedy algorithm falls into this category. There may be no guarantee that
even a feasible solution will be found, and no available measure of how ‘close’ to a global
optimum the solution is. [X] [16.3]

Structured problems may possess special appropriate rules and may even have con-
structive heuristics that generate provably optimal solutions (e.g. MST).

2.4.2 Local search

Algorithm 2.3 (Local search). Iteratively improve a feasible solution to find a local
optimum.

0. Initialize with a feasible solution x0 ∈ X . Let k := 0.

1. Find all feasible points in an ε-neighbourhood of xk Nε(x
k).

2. If cTxk ≤ cTx ∀x ∈ Nε(x
k); stop, we have found a local optimum.

3. Choose xk+1 ∈ Nε(x
k) such that cTxk+1 < cTxk.

4. Let k := k + 1 and go to step 1.

There is no measure on how close to a global optimum the resulting solution is. [X]
[16.4]

2.4.3 Approximation algorithms

A category of specialized algorithms for specific problems that come with performance
guarantees. Let z := cTx for somex ∈ X be computed by an approximation algorithm.
Then, for some α ∈ (0, 1] pertaining to the algorithm

z − z∗

z∗
≤ α (2.11)

should hold. [X] [16.6]

15

2.4.4 Metaheuristics

Metaheuristics intend tobemore efficient thanplain local searchby guiding in a systematic
and efficient way. Some examples are [X] [16.5]

• Tabu search— allow worse solutions and prohibit returning steps [16.5]

• Simulated annealing— probability of movement

One might (perhaps facetiously) remark that these methods are usually used by people
ignorant of the mathematics behind optimization.

General combinations of heuristics also fall under this category. A common useful
method is to start using a constructive heuristic to obtain a feasible solution, and then
continue using local search (with a model-specific neighbourhood definition) to obtain a
locally optimal solution. In general, there is however no guarantee of global optimality.

3 Network flows

Such problems are concerned with flows represented on some graph. There exist supply
nodes that generate flow and demand nodes that sink flowwith storage nodes in between.
The links have limited capacities. One might wish for example to minimize costs for
transport and storage, or maximize the flow rate through the network. [XI] [8.6.1]

Many problems can be represented as network flows: pipeline capacity, project
scheduling, logistics, maintenance windows... Wewill later see that there exists specialized
algorithms and special properties of these problems that help us solve them.

3.1 Shortest path

LetG = (N,A,d) be a directed graph. We wish to find the shortest path from node
s ∈ N to t ∈ N with respect to the edge weights in d. See also specialized algorithms in
A.3.2, which are more efficient than solving using a general LP method.

3.1.1 ‘Stretch’ model (dual)

Let yt be the length of the shortest path from node s to t. The idea is to ‘stretch the arcs’
in the network between s and t, i.e. maximize the difference between their two potentials
yt−ys. Since the arcs are not elastic, their lengths are constraining, and physical intuition
says the constraining arcs are candidates for inclusion in the shortest path. All involved
functions are potential differences, as seen in the LP formulation

max yt − ys

s.t. yj − yi ≤ dij (i, j) ∈ A

yk free k ∈ N.

(3.1)

16

3.1.2 Flow model (primal)

We send one unit of flow along the shortest path from node s to t. Let

xij =

{
1, if arc (i, j) is in the shortest path,

0, otherwise.
(3.2)

The goal is then to minimize the cost (length) of the chosen links, respecting the node
balance; any entering flowmust also leave (except at source and destination).

min
∑

(i,j)∈A

dijxij

s.t.
∑

i:(i,k)∈A

xik −
∑

j:(k,j)∈A

xkj =


−1, k = s,

+1, k = t,

0, k ∈ N \ {s, t}

xij ≥ 0 (i, j) ∈ A.
(3.3)

Due to the particular structure of the constraintmatrix, binary constraints are unnecessary
for this problem. As the reader has already surmised, problems (3.3) and (3.1) are a primal-
dual pair.

3.2 Maximum flow

LetG = (N,A,K) be a directed graph, whereKij denotes the capacity on arc (i, j) ∈
A. Let xij denote the amount of flow through the directed arc (i.j) and v denote the
total flow from source s ∈ N to sink t ∈ N . We define the model

max
x,v

v max flow

s.t. −
∑

j∈N :(s,j)∈A

xsj = −v balance s

∑
i∈N :(i,t)∈A

xit = v balance t

∑
i∈N :(i,k)∈A

xik −
∑

j∈N :(k,j)∈A

xkj = 0 k ∈ N \ {s, t} balance k

xij ≤ Kij (i.j) ∈ A capacity

xij ≥ 0 (i.j) ∈ A

(3.4)

Compare the shortest path problem; we obtain a similar structure in the equality con-
straints. If we have multiple sources/sinks we can replace them with a single artificial
source/sink with outward capacities to the sources/sink equalling their respective sup-
ply/demand. We can also consider this a circulating network by defining xts := v, since
their flows are balanced. [XII]

17

3.2.1 Edmonds-Karp algorithm

Algorithm 3.1 (Edmonds-Karp). Solution method for maximum flow problems (al-
though not the most efficient). [XII]

1. Let k := 0, v0 := 0, x0ij := 0, and u0ij := Kij ∀(i, j) ∈ A.

2. Find a maximum capacity path P k ⊂ A from s to t (modified shortest path
algorithm). The capacity of P k is

ûk := min{min{ukij : (i, j) ∈ P k};min{xkij : (j, i) ∈ P k}}. (3.5)

If ûk = 0 go to step 4.

3. Update the flows, capacities and total flow:

xk+1
ij =


xkij + ûk if (i, j) ∈ P k

xkij − ûk if (j, i) ∈ P k

xkij otherwise

uk+1
ij =


ukij − ûk if (i, j) ∈ P k

ukij + ûk if (j, i) ∈ P k

ukij otherwise

vk+1 := vk + ûk.
(3.6)

Let k := k + 1 and go to step 2.

4. The maximum total flow equals vk with solution xkij , (i, j) ∈ A.

3.2.2 Minimum cut — LP dual

An (s, t)-cut is a set of arcswhich, whendeleted, interrupt all flow in the network between
the source s and the sink t. The cut capacity equals the capacities on all the forward arcs
through the (s, t)-cut. Finding theminimum (s, t)-cut is equivalent to solviong the dual
of the maximum flow problem.

Let γij indicate whether arc (i, j) passes through the minimum cut (in a forward
direction), and πk indicate whether node k can be reached by more flow from the source.

min
π,γ

∑
(i,j)∈A

Kijγij min cut

s.t. −πi + πj + γij ≥ 0 (i, j) ∈ A

−πt + πs = 1

πk free k ∈ N

γij ≥ 0 (i.j) ∈ A

(3.7)

The optimal solution must have binary variables.

18

Corollary 3.1 (Weak duality —max flow/min cut). Each feasible flow xij , (i, j) ∈ A

yields a lower bound on v∗; the capacity of each (s, t)-cut yields an upper bound on v∗.

Corollary 3.2 (Strong duality—max flow/min cut). The value of the maximum flow
equals the capacity of the minimum cut.

3.2.3 General minimum cost network flow problems

Consider a general networkG = (N,A) consisting of a set of nodesN linked by a set
A of arcs. Each node i in the network has a net demand di (a supply is described by
negative demand). We associate a distance/cost cij with each arc (i, j) ∈ A. Each arc
then carries an (to be determined) amount of flow xij restricted by a maximum capacity
uij ∈ [0,∞] and a minimum capacity `ij ∈ [0, uij]. The flow through each node must
be balanced. [XII]

min
x

∑
(i,j)∈A

cijxij

s.t.
∑

i∈N :(i,k)∈A

xik −
∑

j∈N :(k,j)∈A

xkj = dk k ∈ N

xij ≤ uij (i.j) ∈ A

xij ≥ `ij (i.j) ∈ A

(3.8)

As long as every parameter involved is integer, all extreme points of the feasible set are
integral due to the unimodularity of the (equality) constraint matrix. [8.6.3]

The corresponding dual problem is

max
π,α,β

∑
k∈N

dkπk +
∑

(i,j)∈A

(`ijαij − uijβij)

s.t. πj − πi + αij − βij = cij (i.j) ∈ A

αij , βij ≥ 0 (i.j) ∈ A

(3.9)

4 Multi-objective optimization

Manypractical problems have several conflicting objectives. Some goals cannot be reduced
to a common scale of cost/profit and we must make a trade-off.

Definition 4.1 (Pareto optimal). Asolution isPareto optimal if noother feasible solution
has a better value in all objectives.

The set of Pareto optima is also called the non-dominated points or the efficient
frontier, which stems from the fact that solutions are usually visualized in the objective
space (at least for small numbers of objectives). In that case, the non-dominated points

19

have no neighbours in the optimality cone. Note that the set of Pareto optima is not
necessarily convex; in fact, if the problem has integrality constraints, the set may not even
be connected. [XIII]

4.1 Solution methods

4.1.1 ε-constraints method

Construct the efficient frontier by treating all but one objective as a constraint, optimizing
for the remaining one. We enforce that that the secondary objective kmust be greater
than or equal to some εk, for a suitable range of such right-hand sides. Usually the worst
and best values are chosen as endpoints for the range. The solutions to these problems
are points on the Pareto front. [XIII]

However, adding constraints might make the problem significantly harder. Also, the
number of problems to solve grows exponentially with the number of objectives, so for
large sets of objectives this method might not be tractable.

4.1.2 Weighted objectives

Give each maximization (minimization) objective a positive (negative) weight and then
solve a single-objective maximization problem. This always yields an efficient solution,
with comparatively few extra computations. [XIII]

However, spread out weights do not necessarily produce solutions that are evenly
distributed on the efficient frontier. Furthermore, if the objectives are non-concave
(max), or if the feasible set is non-convex (e.g. integral), then not all points on the efficient
frontier may be possible to detect using weighted sums of objectives.

4.1.3 Soft constraints

Consider the multiobjective optimization problem

max
x

[fk(x)]
K
k=1 s.t. x ∈ X. (4.1)

Define a target value tk and a deficiency variable dk ≥ 0 for each objective fk, and from
them construct a soft constraint

fk(x) + dk ≥ tk. (4.2)

The new problem is to minimize the sum of deficiencies
∑K

k=1 dk such that the soft
constraints hold and x ∈ X . [XIII]

The target values should be set too optimistic. Wewill then find a point on the Pareto
front such that we minimize the Manhattan distance to the target values. It is important
that the objectives have a common scale for such a problem to make sense.

20

4.2 Normalization

Consider the multiobjective optimization problem (4.1). Define for k = 1, . . . ,K the
rescaled objectives f̃k(x) ∈ [0, 1]:

f̃k(x) =
fk(x)− fmin

k

fmax
k − fmin

k

(4.3)

where fmin
k := minx∈X fk(x) and fmax

k := maxx∈X fk(x). The new unitless object-
ives have a common scale and can be directly compared.

5 Non-linear optimization

Non-linear programming has several areas of application: vehicle design, architecture,
traffic networks, least squares approximation etc. Function evaluations may be compu-
tationally intensive due to time consuming simulations, and surrogate models may be
required. [XIV] [9.1]

A general non-linear program is described as follows:

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0, i ∈ L
hj(x) = 0, j ∈ E .

(5.1)

Special cases of these are

• Unconstrained problems (L = E = ∅)

• Convex programming (f convex, gi, i ∈ L convex, hj , j ∈ E linear)

• Linear constraints (gi, i ∈ L and hj , j ∈ E linear)

– Quadratic programming (f(x) = cTx+ 1
2x

TQx)

– Linear programming (f(x) = cTx)

The general mathematical properties of nonlinear optimizationmay be very different.
No one-size-fits-all algorithm exists. An optimal solution is not necessarily located at
an extreme point. Non-linear programs can be unconstrained (such an LP would be
unbounded). The objective function f may be non-differentiable (e.g. the piecewise
linear Lagrangean dual objective function). Local optima may exist that are not global
optima (compare integer linear optimization).

21

5.1 Definitions

Solely by considering where possible extrema are located in the problemminx∈S f(x),
i.e. boundary points of S, stationary points of f , and discontinuities in f or f ′ (which
can be modelled using integer variables), we motivate several definitions.

Definition 5.1 (Boundary point). The point x is a boundary point to the feasible set
S = {x ∈ Rn : gi(x) ≤ 0, i ∈ L} if gi(x) ≤ 0, i ∈ L and gi(x) = 0 for at least
one index i ∈ L. [XIV] [10.0]

Definition 5.2 (Stationary point). The pointx is a stationary point to f if∇f(x) = 0.
[XIV] [10.0]

Consider the non-linear problemminx∈S f(x). The following are generalizations
of the previous definitions 2.3, 2.1.

Definition 5.3 (Local minimum, general). The point x is a local minimum if x ∈ S

and ∃ε > 0 such that f(x) ≤ f(x) for all x ∈ {y ∈ S : ‖y − x‖ ≤ ε}. [XIV] [2.4]

Definition 5.4 (Global minimum, general). The pointx is a global minimum ifx ∈ S

and f(x) ≤ f(x) for all x ∈ S. [XIV] [2.4]

5.2 Convex optimization problems

Definition 5.5 (Convex function). A function f is convex on S if, for any x,y ∈ S it
holds that f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) ∀α ∈ [0, 1].

Hence, a function f is strictly convex if, for any x,y ∈ S such that x 6= y it holds
that f(αx+ (1− α)y) < αf(x) + (1− α)f(y) ∀α ∈ (0, 1).

Recall the definition of convex set in 1.3. If all functions involved are convex or con-
cave (min or max respectively, differing by a sign) and all sets are convex the optimization
problem becomes convex. [XIV] [9.3]

Definition 5.6 (Convexoptimizationproblem). Iff andgi, i ∈ L are convex functions,
then the problem to minimize f(x) subject to gi(x) ≤ 0, i ∈ L is said to be a convex
optimization problem.

Theorem 5.1 (Convex constraints yield convex sets). If all the functions gi, i ∈ L are
convex onRn, then the set S = {x ∈ Rn : gi(x) ≤ 0, i ∈ L} is convex.

We collect some useful, well-known results:

Proposition 5.2 (Intersection of convex sets). IfXi are convex ∀i, then∩iXi is convex.

Proposition 5.3 (Hessian test). A function f is convex if its Hessian ∇2f is positive
semidefinite.

Algorithms (typically) converge to an optimal solution on such problems. Recall
a very important property of convex problems: a local optimum is a global optimum
(theorem 2.2).

22

5.3 Karush-Kuhn-Tucker (KKT) conditions

Let S = {x ∈ Rn : gi(x) ≤ 0, i ∈ L}.. Suppose that f : Rn → R is differentiable,
gi : Rn → R, i ∈ L are convex and differentiable, and there exists a point x ∈ S such
that gi(x) < 0, i ∈ L.

Ifx∗ ∈ S is a local minimum of f over S, then there exists a vectorµ ∈ Rm (where
m = |L| such that

∇f(x∗) +
∑
i∈L

µi∇gi(x
∗) = 0

µigi(x
∗) = 0 i ∈ L
µ ≥ 0.

(5.2)

As a special case, note that if all functions are convex and differentiable the conditions
are sufficient for x∗ to be a global minimum of f over S. [p. 289]

For unconstrained problems, the conditions decompose to∇f(x) = 0. They can
also be stated for problems with equality constraints. For a quadratic program they form
a system of linear (in)equalities plus the complementarity constraints, which is used in
specialized algorithms.

The conditions allow us to verify (local) optimal solutions, solve certain special cases,
construct more general algorithms and derive properties of a solution to a non-linear
program. [XIV]

5.4 General iterative search method

Algorithm 5.1 (Unconstrained iterative search). Minimization. Many different choices
are possible for subalgorithms in steps 2, 3 and 4. [XIV] [2.5.1]

1. Choose a starting solution x0 ∈ Rn. Let k := 0.

2. Determine (somehow) a search direction dk.

3. If (some chosen) termination criterion is fulfilled, stop.

4. Determine a step length tk by (somehow) solving argmint≥0 f(x
k + tdk).

5. Let xk+1 = xk + tdk be the new iteration point, k := k + 1, and go to step 2.

5.4.1 Search direction

If we are minimizing, the goal is to ensure f(xk+1) < f(xk). Consider the Taylor
expansion of f along a direction dk [XIV] [9.2]

f(xk + tdk) = f(xk) + t∇f(xk)Tdk +O(t2) (5.3)

23

which implies for sufficiently small t > 0 that

f(xk + tdk) < f(xk) =⇒ ∇f(xk)Tdk < 0. (5.4)

Thus we make the following definition:

Definition 5.7 (Descent direction). If∇f(xk)Tdk < 0 (or> 0) then dk is a descent
(or an ascent, respectively) direction for f at xk.

To minimize, we thus choose dk as a descent direction from xk. [XIV] [10]

5.4.2 Step length — line search

Once a direction is determined, the remaining problem to find the step length simplifies
to a one-dimension problem. Although analytically solvable in theory, it is rarely possible
in practice. Several different numerical algorithms exist, e.g.

• The golden section method (reduce interval of uncertainty),

• The bi-section method (reduce interval of uncertainty),

• Newton-Raphson’s method,

• Armijo’s method.

These should be recognized by any reader who has completed a numerical analysis course.
Again, in practice the exact minimum is not obtained but rather a sufficient improvement
of the function value is made. [XIV] [10.4]

5.4.3 Termination criterion

Since∇f(xk) = 0will not be exactly attained, termination criteria are required. Typical
examples are

•
∥∥∇f(xk)

∥∥ < ε1

• |f(xk+1)− f(xk)| < ε2

•
∥∥xk+1 − xk

∥∥ < ε3

• tk < ε4

where the εj > 0 are selected tolerance parameters. Several of the criteria ore often
combined. The search method only guarantees a stationary solution, the properties of
which are determined by f . [XIV]

24

A Particular problems

A.1 Standard ILP models

A.1.1 Common 0-1 constraints

A short table of common 0-1 modelling situations is collected in the table 4. For further
reference on formulating models, the author recommends the work by G. Brown and R.
Dell, ‘Formulating Integer Linear Programs: A Rogues’ Gallery’, INFORMS Transac-
tions on Education, vol. 7, no. 2, pp. 153-159, 2007. [VII] [13.1]

Table 4: 0-1 constraint examples, where yi ∈ {0, 1} and xj ≥ 0 continuous/integer.
Note that depending on problem sense, some constraints may be unneeded.

constraints notes

y1 =⇒ y2 y1 ≤ y2

y1 ∧ y2 =⇒ y3
y1 + y2 ≤ 1 + y3

y3 ≤ y1, y3 ≤ y2
AND. Avoid non-linearity!

y1 ∨ y2 =⇒ y
y1 + y2 ≥ y3

y3 ≥ y1, y3 ≥ y2
(Inclusive) OR.

x1 > 0 =⇒ y1 x1 ≤ My1 M larger than maximum x1.
y1 =⇒ g(x1) ≤ b g(x1) ≤ b+M(1− y1) M large enough to relax.

x1 ∈ {a1, . . . , an}
x1 =

∑
i aiyi∑

i yi ≤ 1

A.1.2 Knapsack problem

Given a budget b, a collection of objects J with corresponding costs aj and benefits
cj we wish to select an optimal subset of objects. Let the variables xj , j ∈ J indicate
whether j is chosen. Then we formulate the ILP problem

max
∑
j∈J

cjxj

s.t.
∑
j∈J

ajxj ≤ b

xj ∈ {0, 1} j ∈ J .

(A.1)

The binary knapsack problem isO(2|J |) in the worst case. To solve the LP relaxation
one only needs to sort the choices by utility cj/aj which isO(|J | log |J |). [VIIb]

Knapsack problems also have a specific type of cuts calledminimal covers.

25

Definition A.1 (Minimal cover). We call the set S a cover if it holds that
∑

j∈S aj > b.
Moreover, if for all k ∈ S, S \ {k} is not a cover, then S is aminimal cover.

Proposition A.1 (Knapsack minimal covers yield VIs). If S is a minimal cover, then∑
j∈S

xj ≤ |S| − 1 (A.2)

is a valid inequality for the knapsack problem.

A.1.3 Assignment problem

Given n tasks, n resources, and corresponding assignment costs cij , we wish to pair tasks
and resources with each other such that we minimize the total cost. Let xij indicate
whether task i is assigned to resource j.

min
n∑

i=1

n∑
j=1

cijxij

s.t.
n∑

j=1

xij = 1 i = 1, . . . , n

n∑
i=1

xij = 1 j = 1, . . . , n

xij ≥ 0 i, j = 1, . . . , n.

(A.3)

Note that binary constraints are not required, since this ILP has integral extreme points
due to its formulation as a network flow problem. It can efficiently be solved using
specialized LP techniques, or using even more efficient specialized algorithms (primal-
dual-graph-based) inO(n4). [VIIb]

A.1.4 Set covering problem

Given n items, their costs c, andm subsets of the items (with a matrixA ∈ {0, 1}m×n

indicating membership of the subsets), select items such that each subset contains at least
one selected item while minimizing total cost. Let x be a vector of indicators whether
items are selected.

min cTx

s.t. Ax ≥ 1

x binary.

(A.4)

One can also consider the related problems of set partitioningAx = 1 and set packing
Ax ≤ 1. [VIIb]

26

A.2 Travelling salesman — TSP

Given a set V of connected cities and distances dij between them (which may be infinite,
i.e. no link, and directed such that dij 6= dji) find the shortest tour passing through all
cities. A very famous problem with many variants (Euclidean, symmetric etc.). Larger
problems computationally intractable due to combinatorial explosion. [VIIIa] [13.10]

A.2.1 ILP formulation

LetXij indicate whether the tour passes through the link between cities i and j.

min
∑
i∈V

∑
j∈V

dijxij (A.5)

s.t.
∑
j∈V

xij = 1 i ∈ V (A.6)

∑
i∈V

xij = 1 j ∈ V (A.7)∑
i∈U, j∈V \U

xij ≥ 1 ∀U ⊂ V : 2 ≤ |U | ≤ |V | − 2 (A.8)

xij ∈ {0, 1} i, j ∈ V. (A.9)

Compare the assignment problem; the formulation is similar, except we add the sub-
tour eliminiation constraints (A.8). These are the complicating constraints behind the
combinatorial explosion, as a very large number of such subsetsU exist. [VIIIa]

Alternatively, one may formulate (A.8) as∑
(i,j)∈U

xij ≤ |U | − 1 ∀U ⊂ V : 2 ≤ |U | ≤ |V | − 2 (A.10)

A.2.2 Heuristics

TSP, being a structured problem, has several specialized heuristics. For constructive
solutions a greedy algorithmusing either nearest neighbour, cheapest insertion, or farthest
insertion is commonly used. For local search k-interchange (usually k = 2, 3) can be
used, which swaps around k links in the tour such that the tour length locally improves.

A.2.3 Specialized Branch-and-bound

Relaxing integrality in the TSP does not in itself yield a tractable problem. If the subtour
elimination constraints are relaxed the problem decomposes into an assignment problem
with the integrality property that is easily solved. However, the relaxed solution typically
contains subtours. Instead of branching on lots of fractional variables we can branch on
these subtours, such that each node in the tree becomes an assignment problem to solve.

27

A.2.4 MST approximation

Consider a TSP on an undirected graphG = (N,E, c). AssumeG complete and that
the triangle inequality cij ≤ cik + ckj holds ∀i, j, k ∈ N (e.g. considering Euclidean
distances as weights). Then one can find aMST T ⊂ G, create a multigraphG′ using
two copies of T , and find an Eulerian walk of G′ containing an embedded TSP tour.
This algorithm guarantees the the approximate tour is no longer than double the optimal
tour length. [X]

A.3 Graph problems

A.3.1 Minimum spanning tree —MST

Given an undirected graphG = (N,E,d) find a subset of the edges that connects all
nodes at minimum total distance. A spanning tree necessarily consists of |N | − 1 edges
and no cycles. TheMST problem is a simple ‘matroid’ problem that is solved by greedy
algorithms.

Algorithm A.1 (Kruskal’s algorithm). Suitable for sparse graphs,O(|E| log |N |).

1. Sort edges by increasing distance.

2. Choose edges from the beginning of the list; skip any that would result in a cycle.

3. Stop when all nodes are connected.

Algorithm A.2 (Prim’s algorithm). Suitable for dense graphs,O(|N |2).

1. Start at an arbitrary node.

2. Among the nodes that are not yet connected, choose the one that can be connected
at minimum cost.

3. Stop when all nodes are connected.

A.3.2 Shortest path

Recall the shortest path problem: given a directed graph G = (N,A,d), find the
shortest path from source s ∈ N to target t ∈ N w.r.t. edge weights d. The different
formulations of the problem in 3.1 give rise to specialized solution algorithms.

Definition A.2 (Negative cycle). A negative cycle {i1, . . . , ik} ⊆ N is a path such that

k−1∑
`=1

di`i`+1
+ diki1 < 0. (A.11)

Intuitively, any graph with a negative cycle will have an unbounded shortest path.

28

Remark. In a graph with no negative cycles, optimal paths will have optimal subpaths,
i.e. a shortest path from s to t passing through k contains a shortest path from s to k.

Algorithm A.3 (Bellman’s equations). Suppose that the graph is acyclic. In that case
one may solve Bellman’s equations in topological order (i.e. downwards with the flow):{

ys = 0

yj = mini∈N{yi + dij : (i, j) ∈ A;∞} ∀j ∈ N \ {s}
(A.12)

The result is a tree of shortest paths from s to all other nodes. [XI] [8.4.1]

Algorithm A.4 (Dijkstra’s algorithm). Suppose d ≥ 0, letting dij := ∞ if (i, j) /∈ A.

0. Let S := {s}, S := N \ S, and ∀i ∈ N : yi := dsi, pred(i) := s if dsi < ∞.

1. If S = ∅ stop; else, find j ∈ S such that yj = mini∈S{yi}. Set S := S ∪ {j}
and S := S \ {j}.

2. For all k ∈ S and i ∈ S: If yk > yi + dik set yk := yi + dik and pred(k) := i.
Go to step 2.

The predecessor links in pred describe the shortest path from s to all other nodes.

Dijkstra’s algorithm can be extended to support negative arc lengths bymoving nodes
back from S to S systematically (Ford’s algorithm), with detection of negative cycles.

The Floyd-Warshall algorithm finds the shortest path between each pair of nodes. It
is based on the idea of inserting shortcuts into pairs of nodes: i → k → j is a shortcut
for i → j if dik + dkj < dij . In each iteration one improves the distances by shortcuts,
storing matricesD[k] for lengths and pred[k] for predecessors. [8.4.2]

There exist non-linear variants of the shortest path problem, where weights combine
in products (e.g. probabilities) or with other functions. Such problems cannot be
formulated as a LP (at least directly). One might consider themost reliable path (with
probability pij on arc (i, j) ∈ A){

ys = 1

yj = maxi∈N{yi · pij : (i, j) ∈ A; 0} ∀j ∈ N \ {s}
(A.13)

(for which the trick is to instead consider the negative logarithm of the probabilities as
shortest path weights) or the highest capacity path (with arc capacityKij on arc (i, j) ∈
A) {

ys = ∞
yj = maxi∈N{min{yi,Kij} : (i, j) ∈ A; 0} ∀j ∈ N \ {s}

(A.14)

which does possess a direct LP formulation.

29

List of Theorems and Algorithms

1.1 Definition (Linear program) . 5
1.2 Definition (Convex combinations) 5
1.3 Definition (Convex set) . 5
1.4 Definition (Extreme point) . 5
1.1 Theorem (Optimal solution in an extreme point) 5
1.5 Definition (Basic solution) . 6
1.1 Algorithm (The simplex method) 7
1.2 Theorem (Weak duality) . 9
1.3 Corollary (Optimality by weak duality) 9
1.4 Theorem (Strong duality) . 9
1.5 Theorem (Complementary slackness) 9
1.6 Corollary (Duality theorem) . 10
1.6 Definition (Shadow price) . 10
1.7 Definition (Reduced cost) . 10
2.1 Theorem (Weak duality of Lagrangean relaxation) 12
2.1 Algorithm (Land-Doig-Dakin B&B) 13
2.2 Algorithm (Gomory’s cutting plane algorithm) 13
2.1 Definition (Global minimum) . 14
2.2 Definition (ε-neighbourhood of x) 14
2.3 Definition (Local minimum) . 14
2.2 Theorem (Optima in convex problems) 15
2.3 Algorithm (Local search) . 15
3.1 Algorithm (Edmonds-Karp) . 18
3.1 Corollary (Weak duality —max flow/min cut) 19
3.2 Corollary (Strong duality —max flow/min cut) 19
4.1 Definition (Pareto optimal) . 19
5.1 Definition (Boundary point) . 22
5.2 Definition (Stationary point) . 22
5.3 Definition (Local minimum, general) 22
5.4 Definition (Global minimum, general) 22
5.5 Definition (Convex function) . 22
5.6 Definition (Convex optimization problem) 22
5.1 Theorem (Convex constraints yield convex sets) 22
5.2 Proposition (Intersection of convex sets) 22
5.3 Proposition (Hessian test) . 22
5.1 Algorithm (Unconstrained iterative search) 23
5.7 Definition (Descent direction) . 24
A.1 Definition (Minimal cover) . 26

30

A.1 Proposition (Knapsack minimal covers yield VIs) 26
A.1 Algorithm (Kruskal’s algorithm) 28
A.2 Algorithm (Prim’s algorithm) . 28
A.2 Definition (Negative cycle) . 28
A.3 Algorithm (Bellman’s equations) 29
A.4 Algorithm (Dijkstra’s algorithm) 29

31

	Preface
	Linear programming
	Preliminaries
	Basic solutions
	Algebraic description

	The simplex method
	Phase I problem
	Degeneracy and convergence
	Multiple optimal solutions
	Unbounded solutions

	Duality
	Constructing the dual program
	Properties

	Post-optimal sensitivity analysis
	Changes in right-hand-side coefficients
	Changes in the objective coefficients

	Discrete and combinatorial optimization
	Relaxations
	LP-relaxation
	Combinatorial relaxation
	Lagrangean relaxation

	Branch-and-bound — Enumeration
	Cutting plane algorithms
	Heuristic algorithms
	Constructive heuristics
	Local search
	Approximation algorithms
	Metaheuristics

	Network flows
	Shortest path
	`Stretch' model (dual)
	Flow model (primal)

	Maximum flow
	Edmonds-Karp algorithm
	Minimum cut — LP dual
	General minimum cost network flow problems

	Multi-objective optimization
	Solution methods
	-constraints method
	Weighted objectives
	Soft constraints

	Normalization

	Non-linear optimization
	Definitions
	Convex optimization problems
	Karush-Kuhn-Tucker (KKT) conditions
	General iterative search method
	Search direction
	Step length — line search
	Termination criterion

	Particular problems
	Standard ILP models
	Common 0-1 constraints
	Knapsack problem
	Assignment problem
	Set covering problem

	Travelling salesman — TSP
	ILP formulation
	Heuristics
	Specialized Branch-and-bound
	MST approximation

	Graph problems
	Minimum spanning tree — MST
	Shortest path

	List of Theorems and Algorithms

